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PREFACE

Artificial lines are now in practical use in various electrical
industries; namely, in telegraphy, telephony, railway-track sig-
nalling and power transmission. The principles, construction
and tests of such lines are therefore important industrially.

Artificial lines have already found their way, and are continu-
ing to find their way, into the laboratories of engineering colleges,
as aids to the class-room studies of electric transmission and dis-
tribution. The laboratory-class student who actually measures,
in the concrete, the electric behavior of such lines, has a great
advantage over the student who merely studies the same phe-
nomena, in the abstract, out of a book. Moreover, to a student
who may be apt to apply Ohm’s law too generally, the fact that
the current entering a line, under a constant impressed alter-
nating e.m.f., is frequently greater when the distant end is freed,
than when the distant end is grounded, is apt to come as a para-
dox and shock. A few tests on an alternating-current artificial
line may quickly exorcise the mystery. The properties and utili-
ties of engineering-laboratory artificial lines are therefore im-
portant educationally.

The engineering theory of artificial lines is far simpler in hyper-
bolic functions than in any other quantitative terms. Hyper-
boli¢c functions form the natural solution of the fundamental
differential equations which all lines in the steady state neces-
sarily obey. It is therefore important to develop the engineering
theory of artificial lines in the direction of greatest simplicity.
There is need. Enginecering literature in the past contains some
terrible examples of complexity in the non-hyperbolie theory of
the subject.

In applied mathematics, generalized trigonometry is of enor-
mous importanee. ('ircular trigonometry has hitherto claimed
almost exclusive consideration. A plea should be made for the
beauty, simplicity and serviceability of hyperbolie trigonometry,
in those regions where it naturally dominates.

It is the hope and purpose of this book to serve as a text-book
on artificial lines for engineering-laboratory students, and also
as a reference book for students of eleetrie transmission generally.

v
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vi PREFACE

The subject matter is a recent development of part of the con-
tents of the author’s earlier book on ** The Application of Hyper-
bolic Functions to Electrical Engineering Problems.” Some of
the propositions offered here rest upon demonstrations already
presented there.

A complete analysis and study of the behavior of electric lines
would naturally include both transient and steady-state phe-
nomena. The work here presented is restricted almost entirely
to the phenomena of the steady state. For this reason. no at-
tempt has been made to discuss the transient phenomena which
occur on the artificial lines used in duplex telegraphy.

The author desires to express his indebtedness to the New
England Telephone and Telegraph Co. and to the General Rail-
way Signal Co. and Mr. C. F. Estwick for pictures and data
of their artificial lines, also to Mr. H. F. Dodge. 8. B.. M. 1. T.,
for assistance in preparing illustrations throughout the book:
also to Mr. P. L. Alger, A. M., 8. B.. M. I. T.. for assistance in
the computations presented in Figs. 178 and 179, and to Mr.C. W.
Whitall, S. B., M. I. T., for assistance in the tests; also to Dr.
F. A. Wolff of the Bureau of Standards, for suggestions.

The author in this text is also under obligations to the writings
and publications of many =cientists and engineers whose names
would make too long a list to permit of attempting an enumera-
tion; but particularly to Heaviside and Fleming.

1t is hoped that the book may serve as a stimulus to the study
of the electrical phenomena of line conductors, a grand, absorh-
ing, and practically most important subject.

A. E K.

CAMBRIDGE, Mass.,
March, 1917.
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ARTIFICIAL ELECTRIC LINES

CHAPTER 1

DESCRIPTIVE OUTLINE OF ARTIFICIAL LINES, THEIR
EARLY HISTORY, AND THEIR USES

An artificial electric line is a model line constructed of such
materials, dimensions, and parts, so connected, that it shall at
certain assigned terminals, be the electrical counterpart of a cor-
responding imitated real electric line. When the artificial line
is connected to suitable terminal apparatus, such as a generator
at one end, and a motor at the other, the voltage, current and
power, at its assigned terminals, will be respectively the same
as the corresponding quantities on the imitated real line, similarly
connected to the same terminal apparatus.

The principal purpose of an artificial line is thus to furnish an
electric model of a corresponding real line; so that the electrical
behavior of the real line can be imitated by the model, in a man-
ner suitable for either demonstration or observation in the labora-
tory. Not only may the electrical behavior of a projected real
line be predetermined from observations on its model in the labora-
tory; but the behavior of an existing long real line may also be
measured much ‘more conveniently on a laboratory model, than
is possible from simultaneous measurements at distant points on
the real line.

The behavior investigated may relate either to the steady state
of electric flow over the line, or to the transient states of electric
flow, during disturbances. Since, however, the steady state is
much the easier to examine, and is much more thoroughly under-
stood in the present state of engineering knowledge, we shall
confine ourselves, in the main, to the study of the steady states
of artificial and real lines.

Artificial lines may be divided into two general types, namely:

1. Smooth lines, or lines in which the linear constants are dis-
tributed smoothly and uniformly throughout. Thus a smooth
a.c. artificial line would have its resistance, inductance, capaci-

1



2 ARTIFICIAL ELECTRIC LINES

tance and leakance all intimately associated and continuously
distributed.

2. Lumpy lines; or lines in which the linear constants are con-
nected in successive lumps or localized units. Thus a lumpy a.c.
artificial line would have alternate lumps of conductor impedance
and dielectric admittance; 7.e., alternate reactors in series and
condensers in shunt.

Smooth artificial lines have the advantage of being capable of
imitating the electric conditions of real lines for all frequencies
and transient conditions. Lumpy artificial lines have the ad-
vantages of being much simpler, more compact, more durable,
cheaper and easier to construct. They react differently, however,
to different frequencies; so that either some correction, or some
examination for assurance, is necessary to make certain that the
electrical behavior of a lumpy line is applicable to the real line
imitated.

The theory of both real and artificial lines in the steady state
naturally finds expression in hyperbolic functions. With the aid
of these functions all the essential formulas are brief, easy and
difficult to forget. Without them, the expressions to a like de-
gree of precision are lengthy, ponderous and hard to remember.
Examples of the contrast between hyperbolic and non-hyperbolic
formulas will be presented, as occasion may serve, in the following
pages.*

Historical Outline of Artificial Lines.—The artificial line of
series resistance and shunt capacitance first came into use as an

ST

e

adjunct of duplex submarine-cable telegraphy. In its first form
it was a lumpy line with alternate lumps of resistance and
capacitance, as represented in Fig. 1. A similar artificial line
for duplex telegraphy was also employed by J. B. Stearns.

In a later form, introduced by Messrs. H. A. Taylor and Alex.
Muirhead, the artificial line for duplex submarine-cable teleg-

F16. 1.—Varley artificial submarine cable of 1862.

* In particular, see page 163, at the end of Chapter X.
t C. F. VaRLEY, British Patent No. 3,453 of 1862.



OUTLINE OF ARTIFICIAL LINES 3

raphy was a smooth line* in which resistance and capacitance
were distributed uniformly together, as shown in Fig. 2. The
construction employed for effecting the distribution of resistance
and capacitance is indicated in Fig. 3. The first or upper elec-
trode sheet of each paraffined paper layer is cut out into the
form of a grid of such dimensions that the resistance of the strip
between its ends 4 and B is such as should be associated with the

F16. 2.—Muirhead smooth artificial cable of 1875.

capacitance of the condenser. The second or opposing sheet
electrode remains uncut. All the upper sheets in each box
are then connected in series, and all the lower sheets in
parallel.

In the ordinary duplex system of land-line telegraphy, only a
very crude model of the real line needs to be embodied in the
artificial line, because the duplex balance is so crude, and the
receiving instrument so relatively insensi-
tive to imperfections of balance. In the
duplex system as applied to long submarine
cables, however, the siphon recorder, or
other receiver used, is relatively very sen-
sitive to feeble current changes; so that a
high degree of electrical . symmetry is re-
quired between the artificial and real
cables at and near the sending ends. That
is, the artificial cable must imitate the real
cable closely, not only in steady states, Fia. 3.
but also throughout a large class of un-
steady or transient states. A lumpy artificial line is, therefore,
likely to be serviceable for submarine long-cable duplex balances
only at a certain electrical distance from the sending end. Close
to the sending end, it is important to have the artificial cable
smooth and in close imitation of the real cable. Beyond the
design of the artificial cable so as to attain the required degree
of electrical imitation, the operation of duplex-cable telegraphy

* H. A. TavLor and ALEX. MUIRHEAD, British Patent No. 684 of 1875.




4 ARTIFICIAL ELECTRIC LINES

did not demand a knowledge of the quantitative relations of
artificial lines in the steady state.

An artificial line with distributed resistance, inductance and
capacitance was constructed by Prof. M. I. Pupin in 1898, and

a b c

F1e. 4.—Longitudinal section of one coil of Pupin line containing resistance
. h . Al g
inductance and capacitance in association.

measurements on it were published by him in 1899.* The secc-
tions of this line consisted of coils of insulated wire having tinfoil
sheets between the layers. These tinfoil sheets, connected to-
gether, formed one plate of a condenser, the other plate of which

F1a. 5.—Section of an artificial line at Columbia University containing
alternate lumps of inductive resistance and capacitance.

was formed by the insulated wire. A longitudinal section of one
coil is shown in Fig. 4. One assemblance of coils into an arti-
ficial line is shown in Fig. 5.

A smooth artificial power-transmission line with distributed

¢ “Propagation of Long Electrical Waves,” by M. I. Pvein, Trans.
A. L. E. E,| March, 1899, vol. xvi, pp. 93-142.
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resistance, inductance and capacitance is described in the
A. 1. E. E. Transactions for 1912,* as having been installed at
Union College, Schenectady. Its electrical length is stated as
being 130 miles (209 km.) of a one-wire line of No. 1 A.W.G.
copper wire, with resistance 93.6 ohms, inductance 0.3944 henry
and capacitance 1.135 mf. The wire, No. 8 A.W.G. copper, was
wound on glass cylinders, in 240 turns per cylinder. On the
inside of each such tube was a tinfoil layer forming the grounded
side of the condenser. There were about 400 of these wound

Fi1a. 6.—Unit tube of smooth artificial power line.

glass tubes. Each tube was about 414 ft. (1.37 m.) long, and
6 in. (15 cm.) in diameter, weighed complete some 40 1b. (18 kg.),
and represented about 0.5 km. (0.3 mile) of the imitated line.
The tubes were mounted on wooden racks, each about 9 ft.
(2.74 m.) long, by 415 ft. (1.37 m. wide) and 8 ft. (2.44 m.) high,
occupying about 324 cu. ft. (9.15 cu. m.) and holding 100 tubes.
The total space occupied was thus about 1,300 cu. ft. (36.8 cu. m.)
with over 7,000 1b. (3,180 kg.) of copper wire. A unit tube is
illustrated in Fig. 6. Such a line is particularly well adapted
for the study of very rapid transient phenomena.

* “Design, Construction and Test of an Artificial Transmission Line,”
by J. H. CuNNINGHAM, Trans. A. 1. E. E., February, 1911, vol. xxx, part 1,
PP. 245-256.



CHAPTER II

ELEMENTARY TRIGONOMETRICAL RELATIONS
APPLYING TO REAL AND ARTIFICIAL LINES

Before commencing the study of the electrical properties of
artificial lines, it is important to define certain fundamental
trigonometrical relations.

Real Circular Angles.—Let a radius-vector OP, Fig. 7 start,
with center fixed at O, from an initial position OA, of unit length,
on the reference line 0X, and with its free end P on the circle
APB defined by

22+ y?2 =1 (units of length)? (1)

and sweep over or describe the circular sector AOP, in the posi-
tive or counter-clockwise direction. Then the circular angle of
the sector AOP is determined by the area of the sector AOP,
and may be expressed in circular radians. We may for conven-
ience construct a negative sector AOp, equal in area but opposite
in direction, to the sector AOP. Then the magnitude of the
circular angle AOP, in circular radians, will be numerically equal
to the area of the double sector POp. In the case represented
in Fig. 7, the radius OA of the circle being say 1 in., the shaded
double sector is drawn to enclose an area of 1 sq. in., and the
angle of the circular sector AOP is, therefore, 1 circ. radian. A
positive circular angle is one which is described from the initial
line OA in the positive or counter-clockwise direction of rotation.
A ncgative circular angle, on the other hand, is described in the
negative or clockwise direction. Circular angles may be reck-
oned from 0 to either + or — infinity; but for practical purposes
they are usually limited to 360° (2= radians or 4 quadrants),
excess revolutions being ignored.

Real Hyperbolic Angles.—Let a radius-vector OP, Fig. 8,
start with center fixed at O, from an initial position O, of unit
length, on the reference axis OX, and with its free end P on the
rectangular hyperbola, pAP, defined by

2 — y? =1 (units of length)* (2)
6



TRIGONOMETRICAL RELATIONS 7

sweep over or describe the hyperbolic sector AOP, in the positive
or counter-clockwise direction. Then the hyperbolic angle of
the sector AOP is determined by the area of the sector AOP,
and may be expressed in hyperbolic radians. We may, for con-
venience, construct a negative sector AOp, equal in area but
opposite in direction, to the sector AOP. Then the magnitude
of the hyperbolic angle AOP, in hyperbolic radians, will be numer-
ically equal to the area of the double sector POp. In the case
represented in Fig. 8, the radius OA of the hyperbola being say
1 in., the shaded double area is drawn to enclose an area of 1

—_ - Y X
B

\\ )
F16. 7.—Circular angle. F1a. 8.—Hyperholic angle.

8q. in., and the angle of the hyperbolic sector AOP is therefore
1 hyp. radian.

A positive hyperbolic angle is one which is described from the
initial line OA in the positive or counter-clockwise direction of
rotation. A negative hyperbolic angle, on the other hand, is
described in the negative or clockwise direction. Hyperbolic
angles extend from zero to either 4+ or — infinity.

Common Properties of Real Circular and Hyperbolic Angles.—
It will be evident from the foregoing, that, in radian measure,
the magnitudes of circular and hyperbolic angles are similarly
defined with reference to the area of circular and hyperbolic sec-
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tors. A number of such geometrical analogics may be presented
between circular and hyperbolic angles. One only may be
noticed here; namely, that if the frec end P of the radius-vector
OP, Fig. 7, describes a very small circular arc ds, the magnitude
of the very small circular angle thereby described is

dg = (? = -dfs =ds cire. radians  (3)
where p is the unit length of the constant circular radius-vector
OP. Similarly, if the free end P of the radius vector OP, Fig. 8,
describes a very small hyperbolic arc ds, the magnitude of the

very small hyperbolic angle thereby described is

dg = -‘-ipf hyp. radians (4)
where p is the instantaneous length of the hyperbolic radius-
vector OP.* The total circular or hyperbolic angle described in
passing from one position to another of the radius-vector is,
therefore,

B=26 =f£i;g radians ()

but whereas p is constant in the circular case, it is variable in
the hyperbolic case. In fact, if 8 is the circular angle and 6 the
hyperbolic angle of the hyperbolic segment AOP in Fig. 8,

p = Vsec 28 =+/cosh 20 units of length  (6)

Thus, if we consider the case represented in Fig. 8, of a hyper-
bolic angle of 1 radian, the circular angle 8 of the aperture AOP
is 0.65088 circ. radian,or 37° 17’ 33.67”. The secant of 74° 35’ 07"
is 3.762196, which is also the cosine of 2 hyperbolic radians. The
radius-vector p in Fig. 8, therefore, has a length of

1/3.762196 = 1.93964
units, the unit being represented by the length OA.

Numerical Values of the Sines, Cosines and Tangents of Real
Circular and Hyperbolic Angles.—Figs. 9 and 10 represent re-
spectively a certain positive circular angle AOP, and a certain
positive hyperbolic angle apo. The radius OA of the circle, and

* For a demonstration of (4), see Appendix L of “The Application of
Hyperbolic Functions to Electrical Engineering Problems.”



TRIGONOMETRICAL RELATIONS 9

oa of the hyperbola, are each equal to unit length. In Fig. 10,
os and os’ are the asymptotes of the hyperbola, or the two
straight lines, each inclined 45° with the radius oa, which the
hyperbola continually approaches but never meets. Then, if we
consider only numerical magnitudes, and ignore directions in
the plane, we may find the sine, cosine and tangent of the two
angles compared, 8 and 8 respectively, by following the same con-
struction in each case.

To Find the Numerical Value of the Sine.—From the free end
of the radius-vector, drop a perpendicular on the initial radius.
The length of this perpendicular measures the sine of the
circular or hyperbolic angle. In Fig. 9, it is sin 8 = PQ. In
Fig. 10, it is sinh 6 = pg. The sine of a real circular angle
cannot exceed unity, and changes sign twice per revolution.
The sine of a positive real hyperbolic angle is always positive,
and may range from 0 to + <.

To Find the Numerical Value of the Cosine.—The intercept
on the initial line OA, between the origin and the perpendicu-
lar let fall from the free end of the radius-vector, measures the
cosine of the circular or hyperbolic angle. In Fig. 9, it is cos
B = 0Q. InFig. 10, it is cosh 8 = og. The cosine of a real
circular angle cannot exceed unity, and changes sign twice per
revolution. The cosine of a real hyperbolic angle cannot be
less than unity, and is always positive. It ranges between +1
and + «.

To Find the Numerical Value of the Tangent.—Carry a per-
pendicular from the end of the initial radius (reversed for cir-

3r
cular angles between ; and 2) up to the radius-vector or its

production. The length of this perpendicular measures the tan-
gent of the circular or hyperbolic angle. In Fig. 9, it is tan
B= AT. In Fig. 10, it is tanh 8 = at. The tangent of a real
circular angle may range between 0 and + «. It changes sign
twice per revolution. The tangent of a positive real hyperbolic
angle varies between 0 and +1. :

The rules for finding the numerical values of the same trigo-
nometrical functions of negative angles are identical. Thus
taking AOP’ and ap’o as the negative circular and hyperbolic
angles, QP’ and gp’ are their respective sines, OQ and oq their
respective cosines, AT’ and at’ their respective tangents. In
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either case, the sine of a negative angle is the negative of the
sine of the same angle positive; the cosine of a negative angle is
the same as the cosine of the same angle positive; the tangent
of a negative angle is the negative of the tangent of the same

angle positive.
8
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F16¢. 9.—Con- Fi1:. 10.—Constructions for
structions for the the sine, cosine and tangent of
sine, cosine and tan- a hyperbolic angle.
gent of a circular ‘

angle.

Fig. 11 shows the graphs of the sines, cosines and tangents of
positive real circular and hyperbolic angles. The circular angles
are expressed in quadrant measure and the hyperbolic angles in
hyperbolic radian measure.

Reduction of Formgulas from Circular to Hyperbolic Trigonome-
try.—From (482) and (483), we may write
cos B = cosh j8 = cosh (— j8) = cosh 6 numeric  (7)
if we assign to 6 the value § = — jg, and similarly,
sin B = — j slnh j8 = j sinh (— jB8) = jsinh & numerie (8)
also
tanB = — jtanh jB = jtanh (— j8) = jtanh 8 numeric (9)

Any such identity involving circular functions in circular
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trigonometry can be reduced to a corresponding identity in
hyperbolic trigonometry, by substituting cosh 6 for cos g, j sinh 6
for sin B, and j tanh 6 for tan 8.

6.5

55

1.5

0.0 03 L5 2.5 3.5 4.5 5.5 6.0
. ) -

0\0

Hyps. or Quudrants .
F1G. 11.—Graphs of circular and hyperbolic functions.

Thus, taking the well-known identity in circular trigonometry:

cos?B + sin?2g =1 (10)
we have cosh? 6 + j2sinh?26 = 1
or cosh?§ — sinh?24 =1 (11)
which is the corresponding hyperbolic identity. Again,
sin (8, + B2) = sin B, cos B2 + cos B, sin B (12)

whence
Jj sinh (6, + 6;) = j sinh 6, cosh 6; + cosh 6,-j sinh 6,
or sinh (6, + 6;) = sinh 6, cosh 6; + cosh 6, sinh 6, (13)
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Similarly,

cos (81 + B2) = cos B, cos B2 — sin B - sin B (14)
whence

cosh (6, + 6;) = cosh 6, cosh 6, — j sinh 6, - j sinh 0,
or cosh (6, + 62) = cosh 6, cosh 6, + sinh 6, sinh 6; (15)

In this manner, any transformation formula involving sines,
cosines or tangents in circular trigonometry, can be immediately
converted into the corresponding formula of hyperbolic trigo-
nometry; so that it is not necessary to learn independently the
formulas of hyperbolic trigonometry, in order to deal quantita-
tively with real or artificial electric lines.

A list of circular and hyperbolic formulas is given in Appendix
A, for reference.

Geometrical Interpretation of the Exponentials ¢ and ¢ %%.—
If we expand € by Maclaurin’s theorem, we obtain

i o, (B2 (38 | UGB (B)°
Sl Ty oy e
. numeric (16
=148 - g: - '733: g; ‘Z:; - numeric
g, B . g, B
=(1-gtg— - )+iB-5 s )
=cosB + jsin B numeric 17)

Thus if we construct, as in Fig. 12, cos 8 + j sin.8, we obtain a
plane vector or complex quantity OP, of unit length, making a
circular angle 8 radians with the initial radius OA. The ex-
ponential €®, applied to any numerical quantity, thus leaves
the numerical value of that quantity unchanged, but rotates it
about the origin through a positive angle of 8 radians. Simi-
larly, e = cos B — j sin 8; so that OP’, Fig. 12, would repre-
sent such a quantity. The coefficients ¢ and ¢ ” therefore
modify only the polar circular angle, or “‘slope” of the quantity
to which they are applied, and may be regarded as twisting
operators. + If B is taken large enough, the operator ¢t# may
cause the operand to be rotated many times about the origin
in the plane of reference.

An exponential of the form '

, where t is an elapsed time in
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seconds, is a rotor which causes the operand to rotate positively
about the origin in the plane of reference at the velocity of w
radians per sec. Similarly, e™’ is a rotor in the clockwise or
negative direction.

Geometrical Interpretation of the Exponentials ¢ and ¢ °.—
If (Fig. 13) we draw the Cartesian axes 0X, QY through the origin
0, in the plane of reference X0Y, and draw through a point A4,
whose coordinates are z = 1, y = 1, a rectangular hyperbola of
radius OA, having OX and OY as asymptotes, then a radius-
vector OP, starting from the initial position OA, with one end
fixed at O, sweeping with its free end P in the positive direction

N

F16. 12.—Graphical representation of the exponential €% in relation to an
angle of + 8 circular radians.

over the hyperbola, will describe a hyperbolic angle 6, measured
by the area through which it has swept. The projection p of
P, on the Y axis, will then measure ¢ units of length from O.
In Fig. 13, the successive positions of P for hyperbolic angles,
differing by 0.1 hyp. radian, are indicated on the curve up to
6 = 1.2 hyps., with the corresponding exponentials ¢’ indicated
on OY.

Similarly, if the radius-vector, starting from OA moves clock-
wise or negatively along the curve AP'Q’, describing an angle
—0 hyp. radians, the corresponding projection p’ on OY will be
Op’ = ¢’ units from O. :

An exponential ¢t®, may thus be interpreted as the orthogonal*

* An orthogonal projection is defined as a projection made pvrp‘on(li('.uh\rly
to the line or plane of projection.
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projection of the free end of a radius-vector which has described
a hyperbolic angle + 6 radians.

Again, an cxponential ¢**, where t is an elapsed time in
seconds, may be interpreted as the orthogonal projection of the

”
S84}
3.2
3.0
28}
20
24
2.2
20
L8

eV pr
14
12}
1.0

Q

Fi6. 13.

free end of a radius-vector moving over a rectangular hyperbola,
with uniform angular velocity a hyp. radians per sce. describing
equal areas in equal times.



CHAPTER III

TRIGONOMETRICAL PROPERTIES OF REAL
CONTINUOUS-CURRENT LINES

Every c.c.* line, operated in the steady state, possesses two
essential electrical properties, namely: (1) conductor resistance,
and (2) dielectric leakance. Uniform c.c. lines have constant
linear resistance, 1.e., constant conductor resistance in ohms per
mile, or per kilometer, or other selected linear unit; and also con-
stant linear leakance; i.e., constant insulation leakance in mhos
per mile, per kilometer, ete. Strictly speaking, in no actual line
are these linear constants ever completely uniform. The re-
sistance of equal lengths of conductor are never precisely equal,
if only owing to accidental variations of temperature; or of con-
ductor diameter; or of material quality. The dielectric leakance
is still more liable to vary, over a certain range, along a line, if
only owing to variations of temperature, humidity, dimensions
and quality of the insulator. Nevertheless, if we consider any
section of actual line having uniform dimensions and structure,
we may, if the line is not defective or faulty, regard it as though
it possessed a certain average linear resistance and average linear
leakance. The more necarly the line conforms to these average
values, the more nearly should its actual electric behavior con-
form to the behavior computed on the basis of the said averages.
Unless we are entitled to assume some average linear constants
from statistical knowledge of the line, we are debarred from mak-
ing any logical quantitative estimate of the line’s behavior.
If the line is composilte, i.e., if it consists of a plurality of succes-
sive sections, each having its own linear constants, the behavior
of the line can be predicated by taking each section into separate
account (see Chapter XIV). If the line is discontinuous, in the
sense of having a uniform section or sections, except at particular
points where definite deviations or loads occur, such as an in-
serted resistance, or a known applied leak, then the effects of

*The contraction c.c. stands for continuous-current and a.c. for alter-
nating-current.
15



16 ARTIFICIAL ELECTRIC LINES

these loads can be taken into separate account (see also Chapter
XIV).

Hyperbolic Angle of a Line.—Consider the case of a single
uniform line of length L km., such as is represented in Fig. 14,
having a total actual aggregate conductor resistance of R = Lr
ohms, where r is the linear resistance in ohms per wire kilometer,
also a total actual aggregate dielectric leakance of G = Lg mhos,
where g is the linear leakance. The number of leaks may be re-
garded as very great, and sufficiently uniform, so that the leak-
ance of each or any particular kilometer of line is substantially
constant at g mhos. Then the line will subtend or contain a

< —- L km;—- _—
<——————-—0 hypsr—-
<——————-———-Lr=R ohms;)//——- — ——— >
. J
~—
Lg = G mhos.

F1a. 14.—Diagram of a smooth single-wire line.

hyperbolic angle, 6, as is demonstrated in the next chapter, and
which is defined by the relation

0 = L\/rg = La = V/RG hyp.* radians £ (18)
Here the linear hyperbolic angle of the line is
_ - hyp. radians
a=1rg T km Z (19)

a is also called the attenuation constant, or the propagation con-
stant of the line. It should be noted that the unit of length does
not affect the value of 6. In other words, the angle subtended by
any uniform line is independent®of the unit of length; but the
attenuation constant a is directly dependent on the unit of length;
so that if r and g are respectively the resistance and leakance of
the line per wire mile, then a will be 1.609 times larger than if r

* The angle sign £ is appended to the unit of this and other following
formulas to indicate that although, in the c.c. case, the units are essentially

real, yet they may be regarded as complex or plane vector units in the
general a.c. case.
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and g are taken with reference to the wire kilometer. On the
other hand, the angle 6 of a line increases directly as its length,
whereas the linear hyperbolic angle a is a characteristic of a
given type of uniform line and has the same value whether the
line is long or short.

As an example, let us take the case of a line of L = 200 km.
(124.3 miles), r = 4 ohms per wire km. (6.437 @/w.m.) and g =
10~ mho per wire km. (1.609 X 10~¢ /w.m.). Then a =
4/4 X 10-¢ = 0.002 hyp. per km. This is the linear hyperbolic
angle, or the attenuation constant. The angle subtended by
the whole line (R = 800 ohms, G = 2 X 10~* mho) is 0 =
v/800X 2 X 10-* = 0.4 hyp. radian, which is also equal to
the length multiplied by the linear hyperbolic angle.

Significance of the Term Linear Hyperbolic Angle or Attenua-
tion Constant.—A physical interpretation which may be placed
upon a, the linear hyperbolic angle of the line, is that when the
line is very long, either the current or the voltage, at the end of
any selected kilometer length, is ¢* of that existing at the be-
ginning of that kilometer length. In other words, the linear
attenuation factor is the numeric ¢=*. If V is the potential in
volts at any point on the line, in the steady state, then the
potential 1 km. further along the line in the direction of flow of
energy is V, = Ve * volts. Similarly, the current being I amp.
at the same point, the current 1 km. further on is I, = Ie® amp.
If, as is necessarily the case in practice, the value of « is small
with respect to unity, since

a?  a .
e_°=l—a+2!—3!+ R numeric Z (20)

2
we may, for most practical purposes, negleet the term ;, and

all its successors,
so that Vi=V(1 - a) volts £ (21)
and I,=I(1 - @) amp. £ (22)

Thus, in the case considered, a = 0.002 and
V= V(1 — 0.002) = 0.998V volts,

or the voltage falls by 0.2 per cent., or 0.002 per unit, in each
kilometer of line length. The lincar hyperbolic angle is thus the

perunitage of attenuation, of either voltage or current, in a line
2
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that is so long that there is no appreciable reflection from the
distant end. If the line is short, the steady-state linear attenua-
tion factor will, in general, differ from «. In such a case the
actual linear attenuation factor differs from the normal linear
attenuation factor e=.

Normal Attenuation Factor.—A line of large real hyperbolic
angle 6 is necessarily a line of large attenuation, or one in which
the current received at the distant delivery end is very weak
with respect to the current at the generator end. If the line is
grounded at the receiving end through a resistance equal to the
‘““surge resistance’’ (sce page 45), then the attenuation of voltage
and of current will be e=%¢ = ¢9; so that if the potential and cur-
rent at the generating end A are respectively V, and I,, the
values at the recciving end, B, will be

Ve = Vet volts £ (23)
and Ip = I, amp. £ (24)

The ratio e = e L= of received to generated voltage or current
is called the normal attenuation factor of the line. In the case
considered, this normal attenuation factor is e 4= 0.6703;
so that the percentage value of the generated current and vol-
tage received at the distant end is 67.03; or the perunitage value
0.6703. The normal attenuation factor of a line may, therefore,
be defined as equal to the perunitage value of the generated cur-
rent or voltage received at the distant end of the line, when the
line is grounded through its normal surge resistance. If the line
is actually grounded through a resistance other than the surge
resistance, the actual attenuation factors of voltage and current
Vs/Va and Ip/1,, respectively, will, in general, differ from each
other and from the normal attenuation factor 9.

Surge Resistance.—A uniform line of lincar conductor re-
sistance r ohms per wire km., and linear diclectric leakance g
mhos per wire km., possesses a surge resistance ro which is the
square root of their ratio

-_— r : o

T \[g ohms £ (25)

This resistance is not affected by the length of the uniform line.
If we consider a length L km. of the line, having a total conductor
resistance R = Lr ohms, and a total dielectric lcakance G =
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Lg mhos, the square root of their ratio will still be the surge

resistance - 7 _
. |R _ |Lr _ \/1_'
To = \/G =NLg = Vg ohms Z (26)

This resistance has been called various names by various writers,
such as the “characteristic resistance,” the ‘natural resistance,”’
or the ‘““iterative resistance.” Any of these terms may be used.
The term surge resistance has the advantages of brevity and dis-
tinctiveness. It was first applied* as meaning that resistance
which a line automatically offers to its surges or free oscilla-
tions at the high-frequency limit, see formula (371). A physical
meaning may be given to the term by noticing that, as will be
shown later, the resistance which a uniform wire of indefinitely
great length offers, between the home end and ground, is always
equal to the surge resistance ro, whether the distant end is
free, grounded or in any intermediate condition, assuming that
the line is devoid of e.m.f. before applying the measuring appa-
ratus. But although the surge resistance may conveniently
be defined as the resistance offered by an infinite length of the
uniform line considered, it should be remembered that any
finite length of the line possesses a surge resistance, and the same
surge resistance in all parts. Another way of presenting the
same fact is that if for any length of the uniform line considered,
we take the conductor resistance R = Lr, and the resistance
corresponding to the total leakance G = Lg, then calling this
equivalent leak resistance

R = ohms £ (27)

G

the surge resistance will always be the geometrical mean of R and R’,
or

ro = VRR’ ohms £ (28)

If the length L is great, the value of R will be large and that of R’
small; while, on the contrary, if the length is short, R’ will be
large and R small; but their geometrical mean ro will not change.

Moreover, if the uniform line of any, length L km. be suc-
cessively freed and grounded at the distant end, its resistance to
ground as measured at the home end will be say R, and R, ohms
respectively. Then, as we shall see later, the geometrical mean

* “Surges in Transmission Circuits” by A. E. KexneLvy, Electrical
World, Nov. 23, 1901, vol. xxxviii, No. 21, pp. 847-849.
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of these two resistances, if correctly measured, will always be
equal to the surge resistance ro ohms, no matter what the length
of line; or

ro = VR/R, ohms £ (29)

Single-wire and Two-wire Lines in Relation to «, 6 and ro.—
We have hitherto considered only single-wire d.c. real lines using
ground return, such as those used in ordinary wire telegraphy.
We shall now examine two-wire lines forming a metallic circuit,
such as are used in ordinary wire telephony.

In Fig. 15 a two-wire or metallic circuit is indicated as being
voltaged at one end with an e.m.f. E,, volts at battery terminals,
and being loaded at the other end with a resistance R,, ohms.
A single kilometer length of this circuit ab b’a’ is selected from this
line circuit for examination. Let the linear resistance of this

k—1 km—>
1 km.—> ey =T 5l
,.[:—'"/v"hm-*'b 4 =y B
: = -
" A E"/ = g, §=2”" %R, ub
2 \'. < 8. i 2 ;_
8 s ——""I' Ry
= | .
ag ! By g =
; yy Suph= 9,§=20, R,= By,
a 1_1'u/2 )! 5’ T - - Iy .
le—1 km.—> A her, = Ty B
F—1 xm,—>]
F16. 15.—Two-wire line with F16. 16.—Two-wire line divided into
metallic circuit. two single-wire lines, each with perfect

ground return circuit.

pair of wires be r,, ohms per loop km., and let the lincar leakance
be g,, mhos per loop km. Then, if the system is completely sym-
metrical, it is clear that there will be zero potential at the middle
of the battery, and also at the middle of the load resistance.
No electrical change can be made in the system by connecting
either or both of these zero-potential points to ground. If they
are both perfectly grounded, the system may properly be divided,
as in Fig. 16, into two entirely separate and equal parts, AB and
A’B’, cach employing perfect ground-return circuit. The ter-
minal voltage at A and also at A’ will be £, = E, /2; while the
terminal receiving-end load resistance at B and also at B’, Fig. 16,
willbe R, = R,,/2. In the selected kilometer of Fig. 16 there will
be in cach circuit a conductor resistance of r, = r,,/2 ohms;
while the leakance to ground will be g- =2g.. mhos, since two
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equal conductances in series produce a total conductance one-half
of either taken singly.

The linear hyperbolic angle of either ab or a’b’ in Fig. 16 will
be 4/r.g, radians per km.; while that of the loop kilometer abb’a’
in Fig. 15 will be

a, =149, =4 ,21', . 02 =4/rg, = a, radians per km. Z (30)

It is evident that the linear hyperbolic angle will be the same
whether reckoned on a loop-kilometer or on a wire-kilometer
basis.

As an example, a two-wire line may be considered having a lin-
ear resistance r,, = 10 ohms per loop km., and a linear leakance
g,, = 4 X 10-" mho per loop km. Then, if the system were split
into halves as in Fig. 16, we should have two ground-return sys-
tems in each of which the linear resistance was r, = 5 ohms per
wire km., and a linear leakance g, = 8 X 10~7 mho per wire km.
The linear hyperbolic angle on the two-wire basis would then be
a,, =4/10 X 4 X 10~7 = 0.002 radian per loop km.; while on the
single-wire basis it would be «, = v/5 X 8 X 10-7 = 0.002
radian per wire km. It is evident that the linear hyperbolic
angle would be the same for either case.

It, therefore, follows that since

0, =La, = La, =0, hyp. radians £ (31)

the total hyperbolic angle 8 subtended by a uniform two-wire
line is the same as that subtended by either of the two single-wire
lines into which it might be resolved. ,

If we form the surge resistance of the two-wire line based on
formula (26) with the data for 1 loop km. we have

r 2r r
ro,, =4l = ’ =2\/’=2r, ohms £ (32
° \/a,, \/(g) g, 7 (32
2

from which it appears that the surge resistance of a two-wire line
is just double that of either of its single-wire components. This
simple relation is easily borne in mind, if we notice that the two-
wire circuit of Fig. 15 has twice the terminal e.m.f. of cither com-
ponent single-wire circuit of Fig. 16; so that with twice the ter-
minal voltage the same current would flow through the doubled
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surge resistance of Fig. 15 as with the single voltage and single
surge resistance of Fig. 16.
In the case considered, the two-wire surge resistance would be

0
" = 4fx*'10‘_7 = 5,000 ohms
while the single-wire surge resistance of each component circuit
in Fig. 16 would be

— ,-5 -
To, = JS‘ x 1"0__‘.’ = 2,500 ohms

We, therefore, conclude that when a two-wire circuit is under
consideration, it is a matter of indifference whether we form the
angle 6 and surge resistance ro of the line from either loop-kilo-
meter or from wire-kilometer constants, provided we adhere to
one or the other set throughout. The values of 8 and of « for
the line will be the same in either case. The value of r, will bear
a simple and self-evident 2 to 1 relation. Since, however, single
wires are easier to represent and to carry in the mind than double
wires, we shall continue to discuss only single-wire lines with per-
fect-ground or zero-potential return circuit, on the understanding
that the results obtained are immediately applicable to two-wire
or metallic-circuit lines. As for three-wire three-phase circuits,
they are very commonly treated in single-wire star-branch single-
phase components for general analysis; so that the single-wire
mode of representation conveniently applies to them also.
Since there is no numerical distinction between 6, and 6,, or
between «, and «,,, we shall drop these subscripts, and employ
only the symbols § and «. Similarly, we shall continue to use ro
in preference to ro, for the surge resistance of a single-wire uniform
line.

Fundamental Constants of a Real Line.—In the theory of elec-
tric lines, the line angle 6 with its linear value 6/L = a, as well as
the surge resistance ro are to be regarded as the fundamental
constants; while the resistance and leakance of the line, together
with their linear values, are sccondary constants which readily
follow. Thus

To

= arg ohms per wirc km. Z (33)
g = a/ro  mhos per wirc km. £ (34)
also
R = 6r ohms £ (35)
G =20/ro mhos £ (36)
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Having postulated the relations between these fundamental
constants of a real line, we shall proceed in the next chapter to
demonstrate these relations in the theory of real lines, as a pre-
liminary step to demonstrating their corresponding relations to
the theory of artificial lines.



CHAPTER 1V

THE STEADY-STATE DIFFERENTIAL EQUATION OF A
UNIFORM REAL LINE

The Fundamental Differential Equations.—The differential
equations of potential and current on a real uniform line, in the
steady a.c. state, were given by Heaviside, with their algebraic
solutions, in 1887; although the solutions offered were very lengthy
and unserviceable.* The following presentation relates to the
c.c. case, but applies also to the a.c. case, when the mathematical
reasoning is extended from real to complex quantities, in a man-
ner to be considered later.

1
o e —dz--— >
|
|
|
Py | Q1
1
\ 4 V4+dV
1 <—- rdx ohms ™ I+dl
P A ]
18 ¢
SE !
Y 1
Pe 1 Q2
i
1

F1a. 17.—Longitudinal scetion of an element of leaky conductor.

Fig. 17 represents the longitudinal section of a short length
of single-wire uniform cable conductor, with a metallic conductor
PQ insulated from the grounded metallic sheath P.Q,, P:Q,.
Two neighboring parallel planes P,P,, Q:Q2, dr km. apart, cut-
ting across the cable perpendicularly, are indicated by the dotted
lines. The plane P,P, is at a distance x km. from the origin of
the line on the left hand, not shown on the drawing. The plane
Q1Q: is thercfore at a distance of z + dr k. from the origin.
The electrical conditions at the origin, and at the distant right-

* The Electrician, London, January-February, 1887; Reprinted in “Elec-
trical Papers” by Oriver Heavisivg, London, 1892, vol. ii, pp. 247-250.
24
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hand end, of the line are not known, but the potential of the con-
ductor PQ is V volts, at the point P, with respect to ground.
The current in the conductor is also I amp. at the point P.
This current is flowing from P to @, or in the direction of increas-
ing z.

Then the potential at @ will be V + dV volts. The reason
for the change of voltage in dz is the drop of potential in the
conductor impedance. If r be the linear conductor impedance
(linear resistance in the d.c. case), in ohms per kilometer, the re-
sistance of the element of conductor is rdr ohms £, and the
change in potential from P to Q will be:

dV = — Irdx volts £ (37)
av volts
o iz =T Tm, ¢ @9

The current at P, or at  km. from the origin, being given at
I amp., the current at Q, or x + dz, will be I 4+ dI amp. The
current will change between P and Q, owing to diclectric leak-
ance. If g be the lincar admittance of the dielectric in mhos
per kilometer (a real leakance in the d.c. case), the total leakance
of the element PQ will be g-dx mhos £, and the change of current
indz is

dl = — Vgdz amp. Z (39)
a ., amp.
dz — Ve km. ¢ (40)

If we differentiate (38) and (40), each with respect to z, we
obtain

P
Substituting (40) in(41), and (38) in (42), we find

R
and :ZI, = gr-I ;:':11)2 Z (49)

Graphical Relations.—Equations (38) and (40) show that if
we plot, for any d.c. case, the voltage and the current as ordi-
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nates, against the distance z as abscissas, in the manner indicated
in Fig. 18, where V,V is the curve of potential and I,I the curve
of current along the line, then if the gradients of these curves

are plotted, as in the broken curves, the gradient of V, or d.%'

is the same, when taken to a suitable scale of ordinates, as the
I,LI curve negatived, and similarly for the gradient of I.
These relations must hold, in view of (38) and (40), whatever

all T T
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F1a. 18.—Graphs of potential and current and their gradients.

may be the terminal conditions of the line considered. More-
i 2
over, if we plot the gradient of the ((iii curve, or ddz » We repro-
duce the V curve to a suitably selected scale, and if we plot the
. dI 2

gradient of the dg CUrve, or ((ii;’ we reproduce the I curve to
another particular scale.

In the case represented by Fig. 18, a single-wire uniform line
of length L = 200 km. (124.3 miles), is freed at the distant end,
and connected at the home end z = 0, to a potential Vo = + 100
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volts, supplied by a storage battery, whose negative pole is
grounded. The linear constants of the line are r = 10 ohms
per wire km. (16.09 ohms per wire mile), and g = 0.4 X 10-¢
mho per wire km. (0.6436 X 10~® mho per wire mile). The
total resistance of the conductor is thus 2,000 ohms, and the total
leakance 0.08 X 10~* mho, corresponding to a line angle 6 =
0.4 hyp. radian, an attenuation constant a = 0.002 hyp. radian

per km., and a surge resistance ro = 5,000 ohms.

TaBLE I
Particulars Relating to a Line of ¢ = 0.4 Hyp. and ro = 5,000 Ohms
Freed at Far End

l ‘ ! dV? ar | awv | oar

14 I

z Ls 0 . Tdzr | T dr dz? | dx?
km. | km. hyps |°0®h0: siBhO | yoiy  amp | voits | amp. | volts | amp.

i . km. | km. |km.' * km.?

. 77] - =
' 1
\ X 10 X 10-3! X 10-8| X 10-%; X 10~

0 | 200 | 0.40 !1.08107 0.41075(100.000, 7.5990 75.990! 40.000! 400.00 30.396

25 | 175 | 0.35 '1.06188 0.35719: 98.225, 6.06081 60.081, 39.200] 392.90, 26.432

50 | 150 | 0.30 1.04534io.30452 96.605| 5.6337 56.337! 38.678| 386.78' 23.535
1 |

75 | 125 | 0.25 [1.03141,0.25261| 95.406 4.6734' 46.734| 38.163' 381.63 18.693

100 | 100 | 0.20 [1.02007:0.20134| 94.357 3.7247 37.247 37.743 377.43. 14.899

125 75 | 0.15 1.01127,0.15056 93.543| 2.7854 27.854| 37.417 374.17. 11.142

| ]

I
150 50 . 0.10 1.00500!0.10017 92.964
175 25  0.05 1.00!'25;0.050()2I 92.616, 0.9254. 9.254; 37.047  370.47 3.702

200 0 ‘ 0.00 lOOOOOi()OOOOO| 92.501, 0.0000, 0.000 37.000' 370.00i 0.000

1.8531 18.531 37.185? 371.85! 7.412

The preceding table shows the values of the voltage, current, and
their respective gradients, at various distances along the line.
Distances £ km. from the home end appear in the first column,
with corresponding distances L, from the far end, in the second
column.

Fig. 18 gives the graphs of the values contained in the last six
columns. The voltage curve, or catenary V'V, falls from 100 at
A,t092.501 at B. The descending or negative gradient, dV/dz,

of V,is given by the broken ascending line marked 3::,’ which

commences at — 75.99 millivolts per km. at A, and ends in zero
at B. This curve is the image, or negative counterpart, of the
I,I curve of current, which falls from 7.599 milliamp. at A, to
zero at the open end B. The lowest and broken curve, marked

daI . . . . .
di’ is the graph of the gradient of I and is the image or negative

counterpart of the V curve.
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2
If we plot the values of (;zlz from the last column of Table I,

in Fig. 18, i.e., the gradient of :ili’ we should reproduce the 1,1
current curve, provided that we take the full ordinate Aa, as

217
40 X 10~® amp. per km.? Similarly, if we plot %:;:2 from the

preceding colurhn of the table, or the gradient of Zi’ we should

reproduce the potential curve, provided that we take the full
ordinate as 400 microvolts per km2 The change of scale is
represented by the factor gr in (43) and (44).

Expressing (38) and (40) in words, we may say that on any
uniform c.c. line, in the steady state, whatever the terminal
conditions may be, the voltage and current at any point are always
8o related that the local gradient of the one is proportional to the
local value of the other. Moreover, including the disclosures of
(43) and (44), at any point, the gradient of the gradient, of the
potential or the current, either one, is always proportional to the
local value of the same. If the current I, say, falls in a certain
distance to one-half, the gradient of the potential falls likewise
to one-half, and the gradient of the gradient of I also falls to one-
half, in the same distance. We shall see that corresponding con-
ditions apply in the a.c. case.

Overhead Aerial Lines with Their Multiple Segregated Leaks.—
The type of cable conductor indicated in Fig. 17 may be regarded
as having continuously distributed leakance, such as is con-
templated and required in the reasoning of equations (37) to
(44). In the case of an overhead aerial-line conductor, such as
a telegraph wire, supported on insulators, spaced say 25 to the
kilometer, or 40 to the statute mile, it is evident that the leak-
ance is no longer strictly continuous, but occurs in little lumps
40 m. apart, and that these individual leaks are usually far from
being all alike. However, actual tests show that except where
faults or localized leak-disturbances interfere with the law of
averages, an acrial-line conductor normally behaves substantially
as though it had strictly continuous leakance. In other words,
the deviation from theory in the observed properties of a not very
short line, due to lumpiness, is ordinarily insignificant, when the
lumps of leakance are only a few dekameters apart.

Primitive Equations, or Complete Solutions of the Funda-
mental Differential Equations.—Equations (43) and (44) are
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the essential and fundamental differential equations for V and I
on a uniform line in the steady state. Being of the second order,
we must expect that the complete solution of either one will con-
tain two arbitrary constants, to meet the terminal conditions of
any particular case. Moreover, since these two equations are
identical in form, their solutions must also be identical in form.
Taking (43), the solution is*

V = A, cosh (\/gr z) + B,sinh (\/gr-z) volts £ (45)

where V is the potential at point z; while A, and B, are the
two arbitrary voltage constants. In view of (19), this may
be written

V = A, cosh ax + B, sinh az volts Z (46)

Or, we may use the transformation of (506), Appendix A, and
put

V = A’y cosh (az + A’) = A", sinh (ax + A”) volts £ (47)

Either (46) or (47) may be regarded as the complete solution
of the fundamental differential equation (43), and, by differ-
entiating either twice, we can obtain (43). In (46), we have V
expressed as the sum of two hyperbolic functions, each involving
an arbitrary or condition-satisfying coefficient. In (47), we have
V expressed as a single hyperbolic function with one arbitrary
coefficient; but the hyperbolic angle includes another arbitrary
constant, which is a condition-satisfying hyperbolic angle. In
c.c. cases, there is usually but little choice between these two
forms of the primitives (46) and (47); but in a.c. cases, we shall
see that (47) is ordinarily the easier to compute with.

From the type identity of (43) and (44), we may infer that
there is a corresponding pair of equivalent solutions of (44),
namely:

I = A; cosh ax + B, sinh ax amp. Z (48)
or
I = A’;cosh (ax + A) = A”;sinh (ax + A,,)) amp. £ (49)
where [ is the current at any point z along the line, A;, B;, A’;,
and A"; are condition-satisfying currents in amperes; while
A, and A,, are condition-satisfying hyperbolic angles.
Another form of primitive equation which satisfies the funda-

* O. Heavisipg, “ Electromagnetic Theory,” 1893, vol. i, p. 451.
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mental differential equation (43), and which may be obtained
by transformation from either (46) or (47) is

V=A", "+ B, e** volts £ (50)

with a similar expression for I; but except in the case of indefi-
nitely long lines, or of ordinary lines behaving as such, by being
grounded through a load equal to their surge resistance;, this
exponential form does not lend itself to eomputation so well as
the hyperbolic forms.

Evaluation of the Arbitrary Constants in the Primitive Equa-
tions.—The assignment of particular values to the arbitrary con-
stants in the primitive equations (45) to (50), in order to meet a
given set of terminal conditions, ordinarily requires that both
the current and the potential shall be given at one end of the

b oo !
T ' %

F1e. 19.—Line loaded at the motor end. The potential and current at the
generator end are given.
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line. If we consider a line AB, Fig. 19, we may suppose that A
i8 the generator end, and B the motor end of the line; so that, in
the steady state, electrical energy shall flow from 4 to B. In
order, therefore, to reduce any of the primitive equations (45)
to (50) to a definite arithmetical basis, we neced, in general, to
know either V4 and I,, the potential and current at 4 ; or else
Vs and I, the potential and current at B. While, theoretically,
it would suffice to have onc of these data from the A end, and the
other from the B end, yet, from a practical standpoint, this
would be an unlikely condition. Although two terminal data
from one end, therefore, are sufficient for the evaluation of the
two arbitrary constants of any of the primitive cquations (45)
to (50), yet we shall see that if we know the terminal motor load;
i.e., the impedance at the receiving end B, only one other datum,
say the potential or current at either A or B, is needed for the
complete solution of the case.
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Evaluation from Data at the Generator End.—Taking first the
case where the A-end potential and entering current I, are given,
let AB, Fig. 19, be any uniform single-wire line, with an impressed
potential of V4 volts at 4, as observed by voltmeter ¥, and with
any load whatever of ¢ ohms at B. This load may also contain
any steady counter e.m.f. Let the steady current entering the
line at A observed on the ammeter I be I, amp. then let the
voltage be required at the point P, distant z km. from A. The
uniform linear constants r and g of the line are supposed to be
known; so that the lincar angle a hyp. radians per km. is found
by (19). Then the angular distance of the position P from A
is 6, = az hyp. radians. We may therefore, write the primi-
tive equation (46) in the form

Ve = A, cosh 6, + B, sinh 6, volts £ (51)
Since the distance z is here quite arbitrary, we may assign to it
the particular value z = 0, which means moving the point P

up to the end A, where the potential is V4 volts by hypothesis,
and the distance angle 6, = 0; so that we have:

Va= A, cosh 0+ B,sinh 0 volts £ (52)

But cosh 0 = 1, and sinh 0 = 0; so that A, = V,, and if this
happens when z = 0, it is evident that it must happen in (51)
for any value of xz. Hence, rewriting (51)

» = V, cosh 8, + B, sinh 6,

=V, cosh az 4+ B, sinh az . volts £ (53)
If we differentiate (53) with respect to x, we have
dv, .
;;— = alV 4 sinh axz 4+ aB, cosh az
= aV,sinh 6, + aB, cosh 6, ‘l'(‘::]“? L (54)
and substituting (38)
- volts
= I,r = al’, sinh 6, + aB, cosh 6, km Z (55)

where I, is the current strength at the selected point P. If, as
before, we move P up to A, so as to make z = 0, and 6, = 0,
I, becomes I, and

— I, = aV,8inh 0 + aB, cosh 0 volts

km. £ (56)
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whence B, = -1 ,4:[ volts £ (57)

or by (33) = —~ I ro volts £ (38)

or B, is the drop in potential produced by the entering current
in resistance equal to 7o; so that rewriting (51), we have:

Vp = VA COSh 01 - IATo sinh 01

V4 cosh ax — I,7ros8inh az volts £ (59)

This formula expresses the potential V, at any point P, along
the line, distant 6, hyp. radians from the generator end, in
terms of V4, I, and line constants.

Similarly, from (48), we have for the current in the line at the
point P:

Ip=A;cosh ax + B, sinh azr = A; cosh 8, + B;sinh 6§, amp. Z (60)
Taking z = 0, and 6, = 0, this places P at A and makes Ip = I,;
8o that I, = A; cosh 0 4+ B;sinh 0 amp. Z (61)
whence Ai=1, amp. Z (62)

a condition which must hold for all values of z, and rewriting
(60), we obtain

I, = I,cosh ax + B;sinh ax= I,cosh 8,4+ B;sinh8, amp. Z (63)
Differentiating with respect to z, it follows that:

dl = al, sinh axz 4+ aB; cosh az

dx

= ol ,sinh 6, + aB; cosh 6, al:?n& Z (64)
and by (40)

— gVp = al,sinh 6, + aB; cosh 6, amp. Z (65)

where V; is the potential at the selected point P. If we move
PtoAsothatz =0and 6, =0, V, = V,, and

— gV4 = al,sinh 0 + aB;cosh 0 amp. Z (66)
=0+ aBi

or B, = — i Va amp. £ (67)

Substituting (34), B; = — Va amp. Z (68)

To
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so that rewriting (60) and (63)

p = I,cosh ax — ?“ sinh az
[1]
7

= I, cosh 8, — I;‘i sinh 6, amp. Z (69)
(1}

This formula expresses the current strength I, at any point P
along the line, distant 8, hyp. radians from the generator end,
in terms of V4, I, and line constants.

As an example, let us take the casc of the line referred to in
Table I and Fig. 19. Here the observed impressed terminal
potential is ¥, = 100 volts, and the terminal entering current
I, = 7599 X 103 amp. The surge resistance of the line is

B

) 4

‘|4 =By o (L-2)—-—>]
r__.___.. z km— —————>«-—(L- z) km —-—>

e — : : 1

@

¥

F16. 20.—Line voltaged at A and loaded at B. The potential and current
at the B end are observed.

ro = 5,000 ohms. Then the potential at a point P, 50 km.
from A, and, therefore, removed from A by an angular distance
of 0.1 hyp. radian, is by (59)

Ve = 100 cosh 0.1 — 7.599 X 10~2 X 5 X 10% X sinh 0.1
100 X 1.00500 — 37.995 X 0.10017
= 100.500 — 3.806 = 96.694 volts.

The current strength at the same point is also by (69)

100 .
= —3 —_—
Ip = 7.599 X 10~2 cosh 0.1 5,000 sinh 0.1

= 7.599 X 102 X 1.00500 — 0.020 X 0.10017
= 7.637 X 10-2 — 2.0034 X 10—% = 5.6336 X 10-3 amp.

The above values are in close conformity with those given in
Table I, which were computed in a somewhat different way.
Evaluation from Data at the Motor End.—If the potential
and current are observed at the B end of the line, Vy and I,
respectively, as indicated in Fig. 20, then we may reckon the

distance (L — z) km. from B toward A, and take
3 .
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0, = (L — x) hyp. radians Z (70)

as the hyperbolic angular distance of the point P and B.
We may then rewrite (46)

Ve = A, cosh a(LL — z) + B, sinh a(L —x)
= A, cosh §; + B, sinh 6, volts £ (71)

If now we bring the point P into coincidence with B, so that

z=Land6; =0,V = Vs
and s = A, cosh 0 + B, sinh 0 volts £ (72)

or A, =V,
We therefore rewrite (71)
Ve = Vg cosh a(lL — z) + B, sinh a(L — z)
= V5 cosh 6; + B, sinh 0, volts £ (73)

If we differentiate this with respect to increasing z, we have,
by (38),

d;f = — Vs asinh ol — z) — Boa cosh a(L — z)
= — Vga sinh 0, — B,acosh 6; = — Ipr YE?!}:'S Z (74)

Bringing P up to B once more, with 6; = 0, Ip = I,

Vs asinh 0 + B, a cosh 0 = I,r ?]'fg@ Z (75)

whence B, =1 B; = Igro volts £ (76)

Consequently (46) becomes in the general case:
Ve = Vpcosh a(L — x) + Igrosinh a(LL — z)
Vg cosh 0, + Igrosinh 6. volts £ (77)

Similarly, to find the current I we may rewrite (48), and, in the
same way as before, obtain:

»
Pp= Iy cosh 6 + 18 sinh 02
0

= Igcosh a(L—z) + ‘T” sinh a(L—x) amp. £ (79)
0

As an example, we may consider the case represented in Fig.
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21, of a line AB, 150 km. in length, with 100 volts impressed at
A, and the B end grounded through a resistance ¢ = 1,000
ohms. The linear constants are r = 4 ohms/wire km. and
g = 10~® mho/wire km. To these correspond the values a =
0.002 hyp./wire km., 8 = 0.3 hyp. and ro = 2,000 ohms. In this
case, the receiving end potential V, is 60.446 volts, and the re-
ceiving-end current I is 60.446 milliamp. Starting with these
data, and taking a point P 50 km. from B, 6; = 0.1 hyp. radian,
we have by (77)

100
\ 4
\ V

m -
-
£ ——f 1] T~ v
£ Q\§
E
3
20
g

0.569307

hyps.

0.2~100—50-10. 749307
0.15 [—75—75— 0. 698307
0.10 |-50—100-1-0.649307

0.05 |-25—125.

N
.

Fig. 21.—Case of aline with 8 = 0.3 hyp. and r, = 2000 ohms, grounded
at B through a resistance ¢ of 1000 ohms and with an impressed potential
of 100 volts at A.

Ve = 60.446 cosh 0.1 4 60.446 X 10~3 X 2 X 102 sinh 0.1
= 60.446 X 1.00500 4+ 120.892 X 0.10017
= 60.748 + 12.109 = 72.857 volts.
Similarly, by (78)
I, = 60.446 X 1073 cosh 0.1 + 6;;3(;5 sinh 0.1.
= 60.446 X 10~3 X 1.00500 + 30.223 X 10~% X 0.10017
= (60.748 + 3.027)10~® = 63.775 X 1073 amp.

The distributions of potential and current over the line are
given in Table II.
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TasLe 11

Particulars relating to a Line AB of § = 0.3 hyp. and ry = 2,000 ohms
grounded at B through ¢ = 1,000 ohms, and with an im-
pressed potential at A of 100 volts

1 II 111 v v VI VIl ' VI IX X
L [} P P bp =
s L-zx 2 . " .
km. km. hype. cosh 6: sinh 6: volts amp. O;l;{l-”f! cosh 8, sinh ip
\ | ' X 102

| ' R
0 150 0.30 1.045340.30452 100.000 72.390 0.84931 1.38287 0.95516
25 125 0.25 1.031410.25261 92.884 69.980 0.79931 1.33683 0.88719
50 100 0.20 1.02007 0.20134 85‘998I 67.743 0.74931 1.29411 0.82142
H | .

, i | !
75 75 0.15 1.011270.15056 79.329 65.677 0.69931 1.25464 0.75771
100 50 0.10 1.00500 0.10017 72.8571 63.7750.64931 1.21831 0.69590
125 25 0.05 1.001250.05002, 66.568 62.033 0.59931 1.18502 0.63583

150 0  0.00 1.000000.00000 60.446 60.4460.54931;1.154700.577

Degradation to Ohm’s Law in the Case of Negligible Leak-
ance.—If we take formulas (53) and (59) with (57), we have for
the potential V, at any point P,

Ve = VacoshLia — 1, ;sinh Lia volts £ (80)
where a = 4/rg, according to (19).

If now the linear leakance becomes extremely small, so that
we may virtually take g = 0, it follows that « = 0, and that
Lia = 0. Hence,

Ve = VicoshO — I, s_u[h Lia

volts £ (81)

We know from tables, or from elementary hyperbolic tvrigonollnet ry,
that cosh 0 = 1, and it is evident from (475) of Appendix A that
(Lia)? | (Lia)®

sinh La = Lia + 31 + 51 4+ . . . numeric £ (82)
so that, when Lia becomes indefinitely small, sml;l:lg tends to
the limit L,.

Formula (80) thus becomes when
rp = ".A - I_‘ 9r VO]tS V4 (83)

which is the ordinary Ohm’s law value of 17, in terms of the
terminal potential V4 and the IR drop from A to P.
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Again, taking (69) and remembering that 7o = « when g = 0,
we obtain for the leakanceless condition:

I. =1,cosh0 — I:: sinh 0 amp. Z (84)

=1, amp. £ (85)

which expresses the constancy of current along the line.
Similarly, taking (79) with (76), we have, when g = 0,
Ve

Vg cosh O+ Igr volts Z (86)

sinh a(L — z)
a

= Vg4 Ipr (L — x) . volts £ (87)

which is' the corresponding Ohm’s law value of ¥V in terms of
Vs and the IR drop from P to B. The formula (79) for current
similarly degrades to

Ip = I, amp. Z (88)

General Solution in Terms of Position Angles.—If a line AB,
having a surge resistance ro, see (26), and subtending 6 hyp.
radians in accordance with (18), is grounded at B, through a
terminal impedance of ¢ ohms, and receives an impressed vol-
tage at A, so that electrical energy flows in the steady state from
A to B, then the series load, being devoid of lateral leakance,
has no hyperbolic angle in itself, but the end B of the line, im-
mediately connected thereto, acquires a hyperbolic position angle
op of 6’ hyp. radians, defined by the condition:

tanh ¢’ = ¢ numeric Z (89)
0
Having assigned the position angle 6 of the end B in this way,
the position angle* of the end 4 is:
Sa=0+10 hyps. £ (90)

and at any intermediate point P, distant 6, hyps. from B, by
(70), the position angle is:

op = 0: + 0" hyps. £ (91)
In words, the position angle of a point P, distant 8; hyp. radians
Jrom the energy-receiving end B, 1s always found by adding to 6,

* “On Electric Conducting Lines of Uniform Conductor and Insulation
Resistance in the Steady State,” by A. E. KenNkLLY, Harvard Engineering
Journal, vol. ii, pp. 135-168, May, 1903.
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the angle 0’, subtended al B by the terminal loads. Position angles
are of great importance in the electrical computations of steady-
state lines, either with alternating or continuous currents.

Formula for Potential in Terms of the Position Angle.—The
formula which expresses the potential at any point P of a line in
terms of the position angle of P, belongs to the type (47), and may
be derived by direct transformation either from (59) or from (77).
We may proceed to obtain it from the latter.

Ve = Vg cosh 6s 4+ Igro sinh 6, volts £ (92)
= Vp cosh 6; + }; ro sinh 6, volts Z (93)

To .
=Vs (COSh 6: +  sinh 0:) volts £ (94)

and from (89) this is
"» = V5 (cosh 8, + coth 6’ sinh 6,) volts £ (%4a)
using (506) Appendix A,

= VsV/coth? 8’ — 1-sinh (8; + tanh~! tanh 6’) volts Z (94b)

1 ,
= V’é%ﬁli e sinh (6: + 98) volts £ (94c)
- v, Sl voltsZ (95)

I’n - Sinh 63

If we take P at A, where 6p = 8, = 0 + ¢’
1”5 - sinh Bp

and dividing (96) by (97),

Ve _ sinh &p

V. sinhé,

and numeric Z (96)

numeric Z (97)

numeric Z (98)

In general, if at any reference point C on the line, which may or
may not be a terminal, we happen to know the potential V¢, and
the position angle §c, then the potential V, at any other point
P of the line having a position angle & is obtainable from
Ve _ sinh 6 .
Vo = sinh 5, numeric £ (99)

which we can express in language, by saying that the potentials
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of any and all points of a line are as the sines of the corresponding
position angles; so that, knowing the distribution of position
angles, any single observed potential suffices for the determina-
tion of the entire potential distribution.

In the case where the line is grounded directly at B, or¢ = 0,
op = 0, 04 = 0, and op = 0,.

In the case of a line freed at B, ¢ = «,85 = j g, and (96)

becomes by (502)
p = Vp cosh 6, volts Z (100)

and Ve = V4/ cosh8 = V,sechd volts £ (101)

As an example of (98), we may take the case presented in
Fig. 21 and Table II, where ¢ = 1,000 ohms, r, = 2,000 ohms,
and tanh 6’ = 0.5; whence by Tables, 6’ = §; = 0.549307 hyp.
At a position P, 50 km. from B, 6; = 0.1 hyp., and 6 = 6, +
6’ = 0.649307 hyp. The position angle at A where V, = 100
volts, is 84 = 0 + 6’ = 0.849307 hyp. Consequently,

Vs _ sinh 0.649307 _ 0.69590
100 ~ sinh 0.849307 ~ 0.95516
or Ve = 72.857 volts.

Formula for Current in Terms of the Position Angle.—The
formula which expresses the current strength in the line at any
assigned point P, in terms of the position angle &, belongs to
the type (49), and may be derived by direct transformation from
either (69) or (79). We may sclect the latter.

= 0.72857

I, = Iz cosh 6, + ‘;5 sinh 6, amp. Z (102)

0
=1Ip (cosh 0 + : sinh 02) amp. £ (103)

[
= Ip (cosh 6, + tanh 8’ sinh 6,) by (89) amp. Z (104)

= Is"/1 — tanh?¢’ - cosh(6; + tanh~! tanh 8’) by (506)
amp. Z (105)
1
= Ig cosh 0,-cosh (6, + 6" amp. Z (106)
= Ip zg:z g’ amp. Z (107)
B

I _ cosh numeric Z (108)

I B CB—Sh 3;
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If we move the point P up to A, where 6, = §, = 6 + ¢’, and
IP = IA,
? = :g::g‘ numeric Z (109)
B B
Dividing (108) by (109)
p _ cosh ép

I, = cosh é, numeric Z (110)

Finally, if at any datum point, say C, on the line, where the posi-
tion angle is 8. and the current I are known, we obtain:

I, _ coshép

Io = cosh 8, numeric £ (111)

In language, the current strengths at any and all points along
the line are as the cosines of the corresponding position angles.

As an example, we may find the current at the point selected
in the last case 50 km. from B, in the line shown at Fig. 21, where
o = 0.649307 hyp., the current at A being given as I, = -
72.3896 X 102 amp.

Here .
I, _ cosh 0.649307 _ 1.21831 _
72.3896 X 10~ ~ cosh 0.849307 ~ 1.38287 ~ 0-881003
or I, = 63.7754 X 1073 amp.

In the particular case, when the line is grounded at B, or e = 0,
6’ = 0, and 83 = 0, so that &, = 6, and &, = 6.; whence
I, cosh 6, .
1, = cosh 8 numeric £ (112)
Case When ¢ > ro.—In the c.c. case, there is no difficulty in
applying the position-angle formulas (99) and (109), so long as
o is distinctly less than ro; but in the opposite case, when the
terminal load ¢ is distinctly greater than ro, we are faced with the

o . a
condition 8’ = tanh™! (r ), or
0

tanh ¢’ = :0 =k numeric (112a)

a number greater than unity, which is an impossible condition,
so long as 8’, ¢ and r, are all real quantities.

Table III gives the valuesof tanh 8 and coth 6 for various hyper-

bolic angles. Referring to columns I and 11, it is clear that as 6

increases from 0 to «, tanh 6 increases from 0 to 1. If, however,
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TaBLE III.—TANGENTS AND ANTITANGENTS

1 .« | m ‘f v I v | v
0 tanhe | cothe 0 | tanh®  cothd
;, .

0 0 | o« 0 +J2 «< 0
0.5 ' 0.4621 | 2.1640 0.5+jg | 2.1640 ! 0.4621
1.0 | o.7616 ’ 1.3130 “ 1.0 +j5| 1.3130 | 0.7616
1.5 0.9052  1.1048  1.5+j5 1.1048 0.9052

|
| , |
2.0  0.9640 ' 1.0373 2.0 4j5i 1.0373 0.9640
2.5 - 0.9866 1 1.0136 2.5 +j5 1.0136 0.9866
il i
3.0 ‘ 0.9951 | 1.0050 " 3.0 45 1.0050 0.9951
« 1.0000 1.0000 « 4jgp «1.0000 | 1.0000

we usé formula (504), Appendix A, we obtain the entries in col-
umns IV and V. That is, if we add j 12r to any real number its
tangent is greater than unity, and is equal to the cotangent of
that real number. Thus tanh (1.0 + 112r> = 1.313 = coth 1.0.

;) to (c: +3 ;) , the tangent
decreases from « to 1. The same conditions are indicated
graphically in Fig. 22. In order to solve (89) for 8 when a/ro
exceeds unity, we have only to find in tables the real angle whose

Infact, as we increase 6 from (0 +3

cotangent is equal to ¢/ro, and then add j ; to that angle. Since

T . . . . o
o in circular radians, is the same as 90°, or one circular quadrant,

it follows that any receiving-end load ¢, greater than the surge
impedance 7o of the line, involves position angles having an

imaginary circular quadrant, of the type 5, = 8% + j ;hyps.

When we come to apply (99) to a line having a super-surge-
impedance load, we must use formula (502), Appendix A, thus:



42 ARTIFICIAL ELECTRIC LINES

. , T
YP ~ sﬁn}l 5 smh(&, —}-_]2)
“,c - Sinh 50 -

_Jcosh & _ cosh &',
) jcosh 8’c  cosh é&'¢

sinh (B'C +3 ;

numeric (113)

Similarly (111) becomes by (503), Appendix A,

cosh ( 'p +j;)

R A _];Sinh 5'p _ sinh 5'}

Ir _coshép _ o
=T .0 =y e
cosh (8,0 +j;) jsinh 8’c  sinh &'¢

Ic N 60§h6¢: -

numeric (114)
TasBLE IV

Particulars relating to a line AB of 6 = 0.3 hyp., and r, = 2,000 ohms,
grounded at B through ¢ = 4,000 ohms, and with an impressed
potential at A of 100 volts

I 11 111 v v VI v VI IX , X
T L—zx 6 coshé sibhes Vp Ip 3p = g, + ¢ cosh $p sinh 3p
km. km. hyp. volts amp. hyp. : 1
R P 4 - - — - — '
. X 10-3 s X3 X
o 150  0.30 1.04534 0.30452 100.000 34.5350.849307-}-;‘20‘95516 1.38287
' . ) ' i
25 125 0.25 1.031410.25261 96.671.32.078 0‘799307-{-)';,0.88719 1.33683
; :
i . |
50 100 0.20 1.02007 0.20134 93.3582 29.700 0.749307-*—1‘; 0.82142 1.29411
! ' . i I
75 75 0.15 1.011270.15056 90.727 27.396 0.899307+j; 0.75771 1.25464
1 ! '
100 50 0.10 '1.00500 0.10017 88.100 25.162 0.6{9307+j20.69590 1.21831
N 1
125 - 25 0.05 1.001250.05002 85.693 22.990 0.599307+j; 0.63583 1.18502
150 . 0 0.00 1.000000.00000 83.300 20.875 0.549307-}-;;0.57735 1.15470

The effect, therefore, of a super-surge-impedance load at B,
i8 to introduce imaginary quadrants into the position angles
along the line, and to interchange the use of sines and cosines
in the general formulas for potential and current, so far as re-
lates to the real components of the position angles.

As an example, we may take the case of the line AB last con-
sidered (Table II and Fig. 21) with 100 volts at 4, but grounded
at B, Fig. 23, through ¢ = 4,000 ohms. The numerical par-
ticulars of this case are presented in Table IV. Here tanh ¢’ =

4,000,/2,000 = 2.0; whence 6 = 0.549307 + j;hyp. The posi-
tion angle at any point P is found by adding 6: for that point
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to 0’. Such values are given in column VIII. The currents are
then as the cosines and the potentials as the °
sines of these complex position angles, and are ¢
respectively as the sines and cosines of their real

parts, as will be seen by comparing Tables II o
and IV. The values of Vr and Ir appear in

columns VI and VII respectively. They may ©
also be computed from formulas (77) and (79), *
using the data of columns IV and V.

At the point z = 25 km., or 8, = 0.25 hyp., 3 g
the position angle 8, = 0.799307 + j;, and the g
potential, by (113), is o %

. . 3

sinh (0.799307 + j7) . &

Ve =100 X —- — e “ 8
sinh (0.849307 + j7) 5

_ cosh 0.799307 _ 1.33683 b

= 100 X Cosh 0.849307 — 190 X 1 38287 =

= 96.671 volts. - E

Again, since the current I at B is V/o amp., "8

the current at z = 25 km. becomes, by (114) §
=8

cosh (0.799307 + j7) 2

2 .

Ip=Ip——-—- - -- o - B
cosh (0.549307 +J ) 2

. 2 i

_ JjO.88719 o =

= 9.020875 Xj0.57735 = 0.032078 amp. s §

It is remarkable that in a.c. cases, the ques- S
tion as to whether the terminal-load impedance 3 CL
is greater or less than the surge impedance, has «
no significance and, as we shall see, has never to ° E

" be considered. In this respect, the a.c. case is °
easier to deal with than the c.c. case.

Case of ¢ = ro. The Virtually Infinite Line.— o
In the particular case when the load at the
motor end has a resistance equal to the surge o
resistance of the line, the hyperbolic functions %
expressing the potential and current distributions a

reduce, as we shall see, to exponentials.

0
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The position angle at B is then defined by (89),

tanh ¢’ = :0 =1 numeric (113)
[}
The solution of which is = «. Entering (98) with this value
of &, we have
Ve _ sinh 6, _ sinh (6; + «) . .
V. sinhé, sinh (0 + «) numeric  (116)
_ sinh 6; cosh « + cosh 6. sinh «

~ sinh 6 cosh « + cosh 6 sinh « numeric  (117)

100,

p—-—-

m ———— - - - —-—— - ——— . - . -
| T
I !
§ h._l';-. I-ﬁr- ke LI hL-- LI e
g o0+ + + + + + +
2 8 S 8 2 2 =2
= §8, hyps. 3 g g g § g
3 7 [ d S 8
3 o d o L4
.g - - i " — !7 : .
. | ! |
3 | : ! |
> | | :
! o
A km. 8 2 12 = 5|
| i B
SL-z km,Z2 = 2 2 'eL‘
oL ' ; : _ i 3
o 7 ]
= 0. hwu.g 3 E 2 z o 1
2
o
Y

F1e. 23.—Case of a line with 8 = 0.3 hyp. and », = 2000 ohms grounded
at B through a resistance 0 of 4000 ohms, and with an impressed potential
of 100 volts at A.

But sinh « = cosh «, and we may assume that since the same
infinity occurs in both numerator and denominator, we may
divide throughout by sinh « ; so that

v 24 ” 0S8 6 .
:i = s:?:heé i fzi:: 32 = io = ¢ ®-% = ¢ % numeric £ (118)
_cosh 6, — 7sinh 6,

9 volts £ (119)

Vep=V4e = Vyieela=1,
It is evident that the potential falls from A toward B according
to a simple exponential law. It also follows immediately from
cither (97) or (119) that
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cosh 6, + sinh 6,
2 2

Similarly, the fundamental equation for current strength (110)
becomes

Ip = IAE_OI = IAE—L"’ = IA'

Ve = Ve = Vaelre = V

volts £ (120)

cosh 9, — sinh 6,
2

cosh 6, + sinh 6,

2

amp. Z (121)

= Ineh = IBCL'G = IB' amp. V4 (122)

This type of simple exponential attenuation, peculiar either to an
infinitely long line, or to a finite line which has been made vir-

100

8

8
|

3

Volts and Milllamperes

0.1}0.2—30 (—
0,15 [-0.15— 35 ——-—— -

0,25 1-0.05 —125
&

L,
oYo.

>

g
%

(1]
29

LA

F1a. 24.—Case of a line with & = 0.3 hyp. and r, = 2000 ohms grounded’
at B through a resistance 0 = 2000 ohms and with an impressed potential
of 100 volts at A. Exponential case.

tually infinite, 7.e., to behave like a portion of an infinite line by
surge-impedance loading at B, is called normal atienuation. The
normal attenuation factor of a line L km. long is e L=, Both the
potential and current on such a line undergo normal attenuation.

As an example, we may take the case of the line already con-
sidered (L = 150 km., a = 0.002 hyp./km., 8 = 0.3 hyp., ro
= 2,000 ohms), and with an impressed potential of 100 volts
at A. If this line is grounded at B through a surge-impedance
load ¢ = o = 2,000 ohms, we find the conditions set forth in
Table V and Fig. 24.

If we seek the potential at P, 100 km. from A, we have 6, =
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0.2, €2 = 0.818731, and V, = 81.8731 volts. The current at
P is similarly 50 X 10-3 X 0.818731 = 40.9866 X 10~2 amp.
Single Values of Either Potential or Current Needed in Certain
Cases.—It has already been pointed out, in connection with
formulas (45) to (50), that since the fundamental differential
equation (43) for potential is of the second order, two condition-

TaBLE V

Particulars relating to a line AB of § = 0.3 hyp. and r, = 2,000 ohms,

grounded at B through ¢ = 2,000 ohms, and with an impressed potential
at A of 100 volts. Exponential case. Virtually infinite line.

T

z . o : 0 -0, i Ve i Ip
km. ‘ hyps. hyps. ¢ | volts milliamp.
—_— I —_— —— - Lt | —_—
0 ‘, 0.00 | 0.3 1.000000 | 100.0000  50.0000
25 1 0.05 | 0.25 0.951229 | 95.1220 ' 47.5615
.50 | 010 ; 0.20 0.904837 | 00.4837 | 45.2419
! | ,
75 ! 0.15 ' 0.15 0.860708 | 86.0708 | 43.0354
100 @ 020 | 0.10 0.818731 | 81.8731 ' 40.9866
125 | 0.25 |, 0.05 0.778801 | 77.8801 | 38.9400
150 , 0.30 i 0.00 | 0.740818 | 74.0818 | 37.0409

satisfying or arbitrary constants must be forthcoming, if a numer-
ical solution is to be obtained. Similar conditions apply also
to solutions for current strength. In certain cases, however, only
one such arbitrary constant is needed, when the conditions are
such as to imply the second arbitrary constant. Thus, if a line
AB is known to be grounded at B, this condition is equivalent
to establishing one arbitrary constant; so that only one other
arbitrary constant, such asa potential, or a current, needs to
be given, in order to determine the complete distributions of
voltage and current over the line, using (99) and (111), with
0’ = 0. The single necessary quantity to obtain the complete
solutions may be either a potential or a current, at some par-
ticular point on the line. The potential at B is, however, in this
case, an insufficient datum, because we know that this potential
must be zero, and no new datum is provided by offering the
gratuitous information that Vz = 0.

Similarly, if the line is freed at B, the same formulas (99) and
(111) will serve to evaluate the complete distribution, if we re-
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" member that 6’ = j; hyps., and have one independent datum

given, of a potential or a current at an assigned position.
Moreover, if the terminal load at B is given in the form of an
actual or equivalent resistance o, we know the terminal posi-
tion angle §; = 6, by (89), and can then evaluate the entire
potential-current system from a single independent datum.
The transition from the potential to the current distribution,
or vice versa, usually requires a knowledge of the impedance
offered by the line, and this will be considered in the next chapter.



CHAPTER V

IMPEDANCE, ADMITTANCE AND POWER OF A
SMOOTH LINE AT ANY POINT

It is evident that if we consider any line, having a steady dis-
tribution of potential and current, the ratio, at each and every
point, of the potential to the current is equal, in the general
case, to the impedance (in the d.c. case, to the resistance) of the
line at and beyond that point, in the direction of the flow of
cnergy. In other words, if at any point P, of a single line, AB,
the potential with respect to ground is ¥ volts, and the current
is Ip amp., then their ratio Vp/Ir = Rp ohms. If the line were
cut at the point P, and the end toward B were connected to a
Wheatstene bridge or other resistance-measuring apparatus, R»
would be the resistance measured to ground, including the effects
of the distributed conductor resistance, the distributed dielectric
leakance and the terminal load, if any, at B. Similarly, and re-
ciprocally, the ratio Ip/V, would be the admittance G in the
general case (the conductance in the c.c. case) of the line, at and
beyond P, as measured from P to ground.

If we divide (99) by (111), we obtain

Rp tanh ép

R. = tanh 50 numeric £ (123)

or, in words, the impedance at and beyond any point of a line varies
as the hyperbolic tangent of the position angle. If we know the
distribution of position angles and the impedance at any point C,
such as the home end or the far end, then we can find at once the
impedance offered at and beyond any or all other points of the
line. Similarly, dividing (111) by (99) we have
::,: = L—::ﬂ gz numeric Z (124)
or the line admittances are as the colangents of the position angles.
Formulas (123) and (124) express general laws of smooth lines.
For example, consider the line of hyperbolic angle 8 = 0.3
hyp. and ro = 2,000 ohms, grounded at B, through 1,000 ohms,
48
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as represented in Fig. 21.

49

The following Table, No. VI, shows,

in connection with Fig. 25, the values of z, (L — z), 62, 65, tanh &5,

coth 5}-, Rp and Gp.

1400

1000
800
L]
g8
& !
o . .
w|— —— —— |- T — - —-[0.0008
| T ;
&
A
400 l - 1 1 0. 0004
%3]»‘0:"0' ?; g g g §
5 =3 S ? o o s
20 2 4 s 5 {002
5 0Og byps e ci. ¢ ¢
AL-z km; é 2 P 3 by ]
Sz km.® 3 Q 8 §

Fic. 25.—Diagram showing changes of resistance and conductance along
the line AB of § = 0.3 hyp. and ro = 2000 ohms, grounded at B through

1000 ohms.
section PB at P.

TasLE VI

A Wheatstone bridge is indicated as ready to connect to the

Values of Line Resistance and Conductance at various Points along a Line of
6 = 0.3 hyp., and r, = 2,000 ohms, grounded at B through ¢ = 1,000 ohms

: 111

II ‘ v

: ] v sp=tste | V1 |I

-z - !

k:n. " km. ! hy;’u hyps. . Phy;,. tanh 3p |
- . I - - — -

o 150 | 0.30 0.549307 0.849307 0.69071,
25,125 - 0.25!.......... 0.799307 0.66368
B0 100 020 ... 0TS 0.6473
5 75 05 0.699307 0.60393
100 50 :0.10 ... ... 0.649307 0.57121
125 25 0.05 . .. 0.599307 0.53656
150 10.00 ... 0.549307 0.5000

1

VII

| VIII
coth 3, R

P
ohms

IX
Gp
mhos

| X 1073
1,381.4 0.7239
1,327.4 0.7534
1,269.5; 0.7877

1.4478
1.5068
1.5754

1,207.9 0.8280
1,142.4 0.8754
1,073.1 0.9319
|
2.0000 1,000.0, 1.0000

1.6559
1.7507
1.8637

4
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Here the line resistance is 1,000 ohms at B where 5 = 0.549307
hyp.; so that entering (123) with these values of R. and &
respectively, we obtain the values recorded in column VIIIL
Similarly, entering (124) with G, = 1.0 X 1073, and &, =
0.549307 hyp., we obtain the values of line conductance recorded
in column IX. Manifestly the numerical values of Ry and G,
at any point z, should be mutually reciprocal.

A B
4000 |
: | ! .
|
m-———L——l- - i —- —
| |
oW —— — - — : - - — | —
I q |
3400|- ——— = - — v . — 0.00084
§ . |
8 | !
200f-— ——:- — —_— -t — 0.00032
| . ! 3
! | | =
3000 L oy — {o.oum
. | I
hﬁ oo L 1E0) B P ke Bice
- ~ ~ '~ . R
mé s ¥ o g - —go.m
% B g 3 i &
207 - - -2 Q. e e . e -=l9.00000
(L-z) km 3 8 2, 3 &
>z kmA 2 g ] A \
Q

Fia. 26.—Diagram showing change of resistance and conductance along
the line AB of 8 = 0.3 hyp. and ro = 2000 ohms, grounded at B through
4000 ohms. A Wheatstone bridge is indicated as connected to the section
PB at B. Rising curve for resistance, falling curve conductance.

As another example, consider the same line grounded at B
through the super-surge impedance of 4,000 ohms. In this case,
as we have already scen, the position angles from B to A all

. . . . T . .
contain onc imaginary quadrant, or j 2 radians. Referring to

formula (504), Appendix 4, it is to be observed that this extra
imaginary quadrant virtually exchanges the tangent and cotan-



gent of the real component.
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We thus obtain the

tained in Table VII and Fig. 26.

TasLe VII

Values of Line Resistance and Conductance at various points along a line of
6 = 0.3 hyp. and r, = 2,000 ohms, grounded at B through ¢ = 4,000 ohms

51

values con-

I oo v v lvi | vir | vinm | 1x
L—-z' 6: (4 3p = 63 + 0 | tanh | coth Rp | Gp
km. ; km. lhypn.: hyps. hyps. 3 3p ohms i mhos
| | e
0 | 150 | 0.30 | 0.549307 + )| 0.849307 + j5 1.4478 0.69071 2,805.6 0.34536
i !
25 | 126 [0.25|............. 0.799307 +j 1.5068 0.66368| 3,013.6 !0.33184
50 | 100 :0.20 ............. 0.749307 + 5 |1.5754,0.63473 3,150.8 0.31737
75 75 (015 | iieiininnn.. 0.699307 + ;5 /1.6559/0.60393, 3,311.8 !o 30196
100 50 [0.10]..cccuennn... 0.649307 +j, 7|y 75070. 57121, 3,501.4 ]o 28560
125 25 | 0.05|.cccuunnnn... 0.599307 + j; [1. 8637‘0 53656 3,727.4 0.26828
150 0 io.oo ............. 0549307+;2zoooo|osoooo4oooo 0.25000
i

Taking Tables VI and VII together, as well as Figs. 25 and 26,
we may safely conclude that when a line is grounded through an
infra-surge-resistance load at the far end, the line resistance falls
as we approach that end, while the line conductance reciprocally
rises. On the other hand, when the line is grounded at the far
end through a super-surge-resistance load, the line resistance
rises as we approach that end; while the line conductance re-
ciprocally falls. A glance at Table V will likewise show that in
the intermediate case, when a line is grounded at the distant end
through a surge-resistance load, the line resistance neither rises
nor falls, but remains constant all along the line.

Line Resistance in the Unsteady and Steady States.—If we
took up the consideration of the transient building up of poten-
tial and current along a line prior to the establishment of the
steady state,* we should see that any line having a surge im-
pedance of ro ohms, offers this resistance at any point to each
single advancing electric wave in the unsteady state; so that if
Ve is the instantaneous potential at point P, the instantaneous
current in that wave is

* See Chapter VI of “The Application of Hyperbolic Functions to
Electrical Engincering Problems’; also Chapter III of FLEMING'S “The
Propagation of Electric Currents in Telephone and Telegraph Conductors.”
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I = ‘r"’ = Veogo amp. £ (125)
0

where g, is the surge admittance, the reciprocal of the surge im-
pedance. But any outgoing wave tends to be reflected, when
reaching the end of the line toward which it moves. After as
many of these successive reflections have taken place as need to
be taken into consideration when watching for the establish-
ment of the steady state, the effect on the outgoing stream, of all
the superposed reflections of current, is to change the resistance
at any point of the line to

Ry, = 1 tanh &p ohms £ (126)
or G = go coth 6p mhos £ (127)
so that the final current strength becomes
Ip = ViiGp = Ve -go-coth ép = Vp - go/tanh s, amp. Z (128)
Here the factor tanh 6, covers all the effects of reflected waves
to infinity in number and time. If the line is so long that no
reflected waves ever come back from the distant end, then the
initial surge resistance ro remains the final line resistance at

any and every point, as in the case presented in Table V and

Fig. 24.

Sending-end Impedance.—The line impedance at A the send-
ing or generator end, in the steady state, whatever load there
may be at the receiving or motor end, is called the sending-end
impedance R, (in an a.c. case Z,), and by (126) it is

R, = ro tanh 4, ohms £ (129)
In the particular case when the line is grounded at the motor end,
so that¢ = 0, and 6’ = 0, 6, = 6, and

Ry, = ro tanh 6 ohms £ (130)
In the particular case when the line is freed at the motor end, so
that o = «, an(10’=j12rr S.=186 +j;,and

Rsa = rocoth 6 ohms £ (131)

Receiving-end Impedance.—The ratio of the potential V,
at the generator end to the current I, at the motor end, is defined
as the ““receiving-end impedance” R, (in the a.c. case Z))

R = Va ohms Z (132)
Ig
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The receiving-end impedance is, therefore, the impedance which
the line appears to offer to an observer of the current at the
receiving end, who is informed of the voltage at the sending
ead.

Using (126), if the line is loaded at B with an impedance o,

— 8 — ~1 (¢
such that §; = ¢’ = tanh ("0)’

I = Vs _ Va4  sinhéy _ V.,  coshdy
® = rotanh 8y _ sinh é, rotanhds  sinh &, To
amp. £ (133)
and
_ V4 _ rosinh 6, _ rosinh (6 + 6)
k.= Is | coshés cosh 6’ ohms £ (134)
= rosinh 6 + o cosh 6 ohms Z (135)

In the particular case when the line is grounded directly at B,
U=0,0,=0,63=0,54=0

R, = rosinh 6 ohms £ (136)

which is a simple but important formula. As an example, a
line of 6 = 1.2 hyps. and r, = 1,500 ohms, is grounded at B
through ¢ = 1,000 ohms. The angle subtended by this load is
0’ = tanh™! (:’ggg)= 0.80472 = 3. The receiving-end im-
pedance, by (134), is then 1,500 sinh 2.00472/cosh 0.80472 =
1,500 X 3.6446/1.34164 = 4,074.8 ohms. By (135), it would be
1,500 sinh 1.2 4+ 1,000 cosh 1.2 = 1,500 X 1.50946 + 1,000
X 1.81066 = 4,074.8 ohms. The current strength at the re-
ceiving end from say 100 volts impressed at the sending end,
would then be 100/4,074.8 = 0.02454 amp.

Power in the Steady State at Any Point along the Line.—If
we know the potential Vp and current I at a point P on the line
in the steady state, the power at the point, i.e., the rate at which
electrical energy is carried past P to the rest of the line beyond,
is

Pp = Vpl, volt-amp. (137)
and this is ordinarily the most convenient method of determin-
ing the power at P. We may nevertheless ascertain the power

as a function of the position angle of a point on the line as follows:
By (99) and (111)
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Pp Velp sinh 6p cosh 8, sinh 26, .

Pe = VoI, ~ sinh b, cosh d¢ — sinh 25 numeric  (138)
so that, in language, the voli-amperes at any point vary as the
sine of twice the position angle (see (383)).

As an example, we may consider the line represented in Fig.
38, of 6 = 1.75868 hyps. and r, = 1,436.1 ohms, 100 km. long,
and grounded at the far end through 750 ohms resistance. Hav-
ing given that the distant-end potential is V5 = 11.931 volts,
and the distant-end current 11.931/750 = 0.015908 amp., with
a delivered power of 11.931 X 0.015908 = 0.1898 watt; also
that the distant-end position angle is 6¢c = 0.57941 hyp., required
the power at a point P, 20 km. from the distant end, where the
position angle is 0.93114 hyp.

Here

P, _sinh(2X 0.93114) _sinh 186228 _ 31416 _ ..
0.1898 sinh (2 X 0.57941)  sinh 1.15882 ~ 1.43615 :

so that Pp = 2.1875 X 0.1898 = 0.4152 watt (139)



CHAPTER VI

LUMPY ARTIFICIAL LINES

Lumpy artificial lines have already been described in Chapter I.
They may be classified both in regard to the number of their
main wires, and in regard to the nature of their terminal elements.

Classification According to Number of Main Wires.—Artificial
lines are one-wire, two-wire, or three-wire, according to.the

Fra. 27.—Diagram of connections between series and shunt elements in a
single-wire artificial line.

number of their main-line conductors. A typical one-wire
lumpy line is indicated, in part of its length at Fig. 27. Here
21, 21, 21 are three equal sections or lumps of line impedance,
(in c.c. cases, resistance). y y y are three equals leak of ad-
mittance (in c.c. cases conductance), all connected to the common

F4 F41 2
I-- --1

y Y )

ll--wxmwiwmiwm\nmi-n

Zq Zy Z

Fig. 28.—Diagram of connections between series and shunt elements in a
two-wire artificial line.

ground wire, or neutral connection G G. The type of impedance
z, and the type of leak admittance y, depend on the line to be
imitated. Thus, z may be a pure resistance, or a reactance coil,
or a condenser, or any combination of such elements, and
similarly for y. Single-wire lines, in practice, are characteristic
of wire telegraphy.

85
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A typical two-wire artificial line is shown, in part of its length,
at Fig. 28. Here there are three sections, each having equal
impedances z; 2, z; in one line, and similarly equal impedances
22 22 25 in the other line. Between the corresponding lumps of
opposite line impedances are branched the equal leak admittances
y ¥ y. Two-wire lines, in practice, are characteristic of wire
telephony.

A typical four-wire artificial line is similarly shown in Fig.
29, for three sections. 2z, 2z, 2z; are three equal impedances in
line I, z, 2z; 2, three similar equal impedances in line II, zy z; 2z,
in line ITI. Leak admittances yi1y:1¥1, ¥2¥2¥s2, ¥s Y3 ¥s, are tapped
off between corresponding line lumps of impedance to the ground
wire or neutral connection G G. Three-wire lines, and four-wire
lines, in practice, are characteristic of three-phase a.c. systems.

FiG. 29.—Diagram of connections between series and shunt elements in a
four-wire three-phase artificial line.

In theory, it is unnecessary to employ any except one-wire
artificial lines; because any symmetrical two-wire or three-wire
system can always be subdivided into a like number of virtually
independent single-wire systems. We shall, therefore, study
only the theory of single-wire artificial lines, on the understand-
ing that the results can be readily applied to either two-wire or
three-wire artificial lines.

Classification According to Terminal Elements.—Artificial
lines which terminate in half-lumps of line impedance, are called
T lines; while those which terminate in half-lumps of leak ad-
mittance are called 11 lines.

If r be the line impedance per section (ohmsZ) and g the leak
admittance per seetion (mhosZ), then if the leak g is applied at
the middle of the line section as in Fig. 30, the section is called a
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T section, as is suggested by the diagram. If on the other hand,
the leak g is divided into two half-leaks, each of g/2 mhos; and
one half-leak is applied at each end of the line impedance sec-
tion r, as shown in Fig. 31, the section is called a II section, as
is also suggested by the diagram.

DI S

g r
4 g
2 2
Y
G G G
F16. 30.—T section, compris- F16. 31.—II section, compris-
ing two equal-series elements ing one-series element with a leak
and a leak or shunt element be- or shunt element at each end.

tween them.

If a number of T sections are connected in series, the result is
a simple alternation of r and g lumps except at the terminals,
where half-sections, r/2, of line impedance supervene. Thus
Fig. 32 shows an artificial line of four T sections. The sum total

i€
Fra. 32.—Four-scction T line.
of all the line impedances is 4r ohms, and the sum total of the
leak admittances is 4g mhos.

If, on the other hand, a number of II sections are connected in
series, the result is a simple alternation of r and g lumps, except
at terminals, where half-sections of leak admittance supervene.
Thus Fig. 33 shows an artificial line of four II seetions. The
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sum total of all the line impedances is 4r ohms, and the sum total
of all the leak admittances is 4g mhos.

Away from the ends, there is no neccssary difference between
a T line and a II line. The distinction lies in the terminal ele-
ments only. Each type has, as we shall sce, its own relative
advantages and disadvantages.

We shall also sce that each T section, or II section, of artificial
line subtends a certain hyperbolic angle 6 radians. A line of »
scctions then subtends a total angle of @ = n6 hyps. A T line
or a IT line also possesses a surge impedance r, ohms, which is
independent of the number of sections. .

The natural line which a given artificial line imitates, and to
which it corresponds, has the same angle © and surge impedance
ro as the artificial line. The first problem which presents itself,

< ——— —— —— ——— ——Y4r - - - -—

i€
Fra. 33.—Four-section 11 line.
therefore, in considering an artificial line of a given number of
T or 1 scctions, each having definite lumps of line impedance
and leak admittance, is the determination of its total line angle
O hyps. and its surge impedance r, ohms.

First Approximation to the Section Angle 6 and Surge Impe-
dance r, of a T or 1I Section.—If a single uniform smooth line has
a total conductor resistance of R ohms, and a total dielectric
leakance of ¢ mhos, then we know from (18) and (26) that its
line angle is

0 = VLG hyps. Z (140)
and its surge impedance
ro = VR,G ohms £ (141)

In the same way, ignoring the lumpiness of the leaks in an arti-
ficial line section, having a line resistance r ohms, and a section
leak of g mhos (Figs. 30 to 34), the uncorrected section angle
will be

6. = \/rg  apparent hyps. Z (142)
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whether the section be a T or a II section. Likewise, the surge
impedance will be o
ro = v/r/g apparent ohms £ (143)

The total uncorrected angle of a line of n such sections will then
be
6, = n+/rg apparent hyps. Z (144)

and the surge resistance of the line
ro = v/r/g apparent ohms £ (145)

These values require to be corrected for lumpiness. The lumpi-
ness errors tend to increase, the larger and fewer the line
sections.

There are two ways of arriving at the lumpiness corrections of
6 and 7o in an artificial line. One is to solve the problem by.con-
tinued fractions. The other is to find the “equivalent” T or II

4 v 3 111 2 1I 1 I 0

F16. 34.—Four-section T line grour;lded at motor end B through a load of
o ohms.

of a section. The two methods are mutually illustrative, and
we shall consider both, reserving the second method for the next
chapter.

Impedance of a T Line Grounded through a Load at the Far
End.—Let us consider a line of T sections, four of which are
indicated in Fig. 34, grounded at B through an impedance of ¢
ohms Z. Each section has a line impedance of r ohms Z, and a
leak of admittance of g mhos Z. Required the impedance offered
by this line at and beyond any section junction; i.e., at the Nth
junction. At, but not including leak I, the impedance beyond
I to ground at B is

R = ;—{— o=m ohms £ (146)

Converting this impedance into an admittance,

G = ,1

n mhos £ (147)



60 ARTIFICIAL ELECTRIC LINES

Adding to this the leak admittance at 1, of g mhos, we have for
the total admittance at I, leak included,

"Gl =¢g +;; mhos Z (148)

Converting this into an impedance, the impedance at and
beyond I is

Ry = - 1 i ohms Z (149

g+m

Shifting the point of observation back to leak II, the impedance
there, excluding that leak, is (see Appendix B)

Ru=1+ - = 1/Fsr,g)10bms £ (150
g+ m
Or as an admittance,
Gu = —i—i = Fi(gy)1 mhos £ (151)
r+ - - 1 "
g+ m
Adding in leak II,
Ghi=g+ -1 | = UFs(gn): mhos £ (152)
T+ "
g+ m
Or, as an impedance at and including leak 11,
h = 1 1 = Fi(g,r)t ohms £ (153)
g +- - 1 "
r+ - - 1
g+ m

Proceeding in this way along the line, we find that the impedance

at leak N, including that leak, may be expressed as a terminally

loaded alternating continued fraction (sce Appendix B) of the

type F,, (g,r) 1 n, being an odd number, and connected with the
m

leak number N by the relation

n, =2N — 1 numeric Z (154)

At the section junction N next behind leak N (having the same
numeral in arabic), the impedance at and beyond, will be



LUMPY ARTIFICIAL LINES 61
r , r
=5 + Ry = 5 + F, (gr)1 ohms Z (155)
Turning to (563) Appendix B, this is found to be:

Ry = \/; . cosh ». tanh {(n, + 1) v 4+ v’} ohms £ (156)

where by (546) )
= sinh~! (\2&) hyps. Z (157)
and, by (553)

= tanh~! <"" \/5 ~ o ”) = tanh™! ( \/ \/rg\,

coshv coshv
hyps. £ (158)

In (156), it is evident from (143), that /r/g is a first-approxima-
tion surge impedance, which we may denote by r’y, that is

o = \/; ohms £ (159)
Thus
Ry= 1’ cosh v -tanh {(n, + 1)v + ¢’} ohms £ (160)
where
— r +
m_ /g 2 vf_\/rs
! 2 r
y' =t -1 r,o . =t -1\_"0 i
2nh cosh v tanh cosh v
- -1 4 ,
= tanh (r,o cosh v) hyps. £ (161)

Wheno = 0,v" = 0; wheno = 0,0’ = «;wheno = «, v’ =j;-

v’ is wholly real from ¢ = 0 to ¢ = 7o, and contains an imagi-
nary quadrant or ] ;: frome = ro to ¢ = «. Moreover, from
(142), it is evident that v is the angle whose sine is the uncorrected
angleo of a half-section. That is a half-section having a line

resistance of r/2 ohms Z, and a half-leakance of g/2 ohms £
would subtend, ignoring lumpiness, an apparent angle

6. [r g

Vo= 9 = V2 2

apparent hyps. £ (162)
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If, therefore, we define the surge impedance of the artificial

T line as ro = r’o cosh v ohms Z (163)

(160) reduces to

Ry = rotanh (2Nr 4+ ') = rp tanh{2Vr 4 tanh—! (;o) :
ohms Z (164

where

sinh v = \/g . g = v,; or v = sinh~'v, numeric £ (165)

which connects the true and apparent semi-section angles.
Further, if we write

8’ = 65 = tanh-! (") hyps. Z (166)
To

6 =2v hyps. £ (167)

by =N0+ 8 =0+38  hyps. £ (168)

This becomes Ry = ry tanh (N0 + é5) = ro tanh &y
ohms £ (169)

which is identical with formula (126) correspondingly developed
for smooth lines.
If then we form the angle subtended by a section as

= 2 sinh™! \(ng = 2v hyps. £ (170)
and form the surge impédance of the section or line by
Ty = /r~cosh v ohms £ (171)
Vg

in accordance with (163), and finally determine the angle sub-
tended by the load in position angle at B, by (166), it follows that
the impedance at and beyond any junction of a T line s the same as
at the corresponding position angle of a smooth line of the same 6
and rq, loaded at B with the same ¢. The line impedance at and
bevond each junction of the T linc will correspond precisely
with that at the corresponding position angle on the conjugate
smooth line. Away from junctions, of course, the correspondence
must cease, owing to the lumpiness of the T line.

If the terminal load ¢ exceeds ro, then, as in (112a) and (89), an
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imaginary quadrant, or j T will appear in 8’ = §g, which will
2

replace tangents by cotangents in the application of (169). We
shall see that this distinction disappears in a.c. cases, and (166)
applies universally.

Formulas (170) and (171) are thus the corrections for the lumpi-
ness of a T line. ’

As an example, we may take (see Fig. 35) the five-section T line
shown in Fig. 38,1oaded at themotorend withe = 750 ohms. Here
r = 500 ohms,andg = 0.00025 mho. The first-approximation sec-
tion angleis, therefore, /500 X 0.00025=+/0.125 = 0.35355 hyp.,

.. . 500
and the first-approximation surge impedance /o = 0.00025 =

Resistance Ohimn

11I 2 1I

5 v 1 v
© r km, §

Fig. 35.—Line resistance at and beyond leaks and junctions of loaded
T line, and at corresponding position angles on the conjugate smooth line.
Sce Fig. 38.

/2,000,000 = 1,414.2 ohms. The corrected section angle is, by

(170), 8 = 2s8inh—!? 0'32355 = 0.35174 hyp. The corrected surge

impedance is, by (171),r, = 1,414.2 X cosh 0.17587 =1,436.1
ohms. The angle subtended by the load is also, by (166), 8’ =
tanh-! (I,Zggi) = 0.57941 hyp. If we add 6’ to N9, we obtain
the position angles of the junctions shown in Fig. 35. At each
junction, the resistance is given by (169). The resistance com-
mences at 750 ohms for junction 0, rises steadily to 1,000
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ohms by leak I; then falls, owing to the effect of the leak to 800
ohms; then rises to 1,050 ohms at junction 1, and so on, follow-
ing the set of zigzag straight lines indicated. The conjugate
smooth line of 1.7587 hyps. and surge impedance 1,436.1 ohms,
loaded at B with 750 ohms, would offer a continuous line resist-
ance from point to point, following formula (126), which corre-
sponds exactly to (169) at section junctions, asshown by the contin-
uous curve ARB in Fig. 35. It is evident that each and every
point of an active smooth lines possesses a corresponding posi-
tion angle é,; but an artificial line can be said to have position
angles only at its junctions and mid-sections.

At and excluding the Nth leak, the line impedance is, from (150)
Ry = s sinh {(2N — 1)» +_v b glrlhj. sech v

T "% cosh {(2N — 20+ o'} cosh dy_;

ohms Z (172)

while at and including the Nth leak, the line impedance falls
by (153) to

R’ , sinh {(2N — 1)v 4+ ¢’} ~  sinh &y sech v
XK =To -

cosh [(2Nv 4+ '} ~ ™ " cosh &y
ohms £ (173)

Thus, at and including leak III in Fig. 38, the line impedance
would be

1,414.2 X ° sinh (5 X 0.17587 + 0.57941)

cosh (6 X 0.17587 + 0. 57941)
sinh 1.45875

1,414.2 - cosh 1.63462 = 1,080.9 ohms
Potentials at Leaks and Junctions.—The law of distribution of
potential over a smooth line in the steady state, is, as we have
seen, directly as the sines of position angles, and the distribution
of line impedance directly as the tangents of position angles.
We have also found in (169), that the latter law of impedance
is true for T lines at junction points. This suggests that the for-
mer law of potential may also hold true for such junction points.
The following is, however, a demonstration of this proposition.
Let Vy be the potential at junction N (volts Z),
Vu be the potential at adjacent downside leak N (volts £),
Ry be the line impedance at junction N (ohms £).

Numerically N = N
Then

P
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, sinh {(2N — 1)y + '}
Ve _Rx_"°" cosh(2Nv +v)
Vv Ry  tocoshv-tanh(2Nv + ')
1 sinh{(2N—-1)v + '}

= coshs  sinh @N» 4+ v') numeric Z (174)

and
V-1 _ Ry-1 _ rocoshv-tanh{2(N — 1)v 4 v’}
Ve  Rx » ginh {(__2!‘(_—_1)1)+v}
cosh {2(N — 1)v + v’}
_ sinh {2(N — 1)v 4 v} .
= cosh Y inh (2N — o + o'} numeric £ (175)
thus
Vy-1 _ sinh{2(N — 1)v + ¢’} _ sinh éy_, .
Ve = sinh(2Nv +¢/)  ~ sinh éy numeric £ (176)

That is the potentials at successive junctions are as the sines of the
position angles, and if this is true for successive junctions, it
must be true for all the junctions.

Line Currents at Junctions.—Since at T-line junctions, the
potentials are directly as the sines of the position angles, and the
line impedances as the tangents of the same, it may almost be
inferred that the line currents at junctions are as the cosines of
the position angles. The following, however, is a demonstration
of the proposition.

Let Iy be the line current at junction N (amperes £),
Ix_, be the line current at junction N— 1 (amperes Z),
N = N be the number of the leak between them 177)
Then
cosh {2(N — 1)v + '}
Inoy _ Gx rosmh {(2N — - Do + o'}
[ (R cosh (2Nv + v')
r’osinh {(2N — 1)v + v’}
cosh {2(N — Do + '} cosh dy_,;
cosh (2Nv + v') = cosh &y

Since the cosine proposition applies for any pair of adjoining
junctions, it must apply to all of the junctions. The current at
a junclion is thus the same as at the corresponding point on the
conjugate smooth line.

Powers at Junctions.—Since, just as in smooth lines, the poten-
tials at T-linc junctions arc as the sines of the position angles,

and the currents as the cosines of the same, it follows, as with
5

numeric Z (178)
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F1a. 36.—Five section T line freed at motor end, and its conjugate smooth
line.
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Fie. 37.—Five-section T line grounded at motor end, and its conjugate
smooth line.
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- (138), that their product the voltamperes, and in d.c. cases the
powers, at T-line junctions, are as the sines of twice the position
angles.

Summary of Facts Concerning a T'Line.—All of the immediately
foregoing propositions concerning line impedance, potential, cur-
rent and power on a line, loaded at its motor end with any im-
pedance up to infinity, can be expressed by the proposition that
a T line has, al its junclions, all of the electrical properties of ils
conjugale smooth line. In other words, a T line is the exact
counterpart of its equivalent smooth, or conjugate line, if we
confine consideration to its junctions and terminals. Away
from junctions and terminals, the electrical conditions may be
very different from those at corresponding points on the conjugate
line.

Abundant examples of these propositions may be found in
Figs. 36, 37 and 38, which give the distributions of potential

3 2 1 0

Y
AIVMWNWW
L4 g
< g g 3

F16. 39.—Three-section II line grounded at motor end B through a load of
conductance y mhos.

current, conductance and resistance over the five-section T
line already considered, as well as over its conjugate smooth line,
foroc = 0,0 = «, and ¢ = 750 ohms.

Impedance of a IT Line Grounded through a Load at the Far
End.—Let us consider a II line of N sections, three of which are
indicated in Fig. 39, grounded at B through an admittance of v
mhos Z. Each section has a line impedance of r ohms £ and a
total leak admittance of g mhos Z. Required the admittance and
impedance offered by this line at and beyond any section junc-
tion; i.e., at the Nth junction and between the two leaks there.

At junction 0 or terminal B, the admittance to ground is

Gy = g—i— Yy=u mhos £ (179)

Converting this into an impedance at 0

Ry = ! ohms £ (180)

m
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Shifting the measuring point to 1, but excluding the double leak
there,

R, =1 +:; ohms 2 (18I

Converting this into an admittance,

1

Gy =- - i mhos Z (18
r+
I
Adding in the two leaks at 1
Gi=g+ - = 1F.(gon mhos £ (183)
1 u
r+
I
Converting this into total impedance at 1
1
R; = g--i:“:l____ = Fz(g,l')‘l; ohms Z (184)
r+1
m

Shifting the measuring point to 2, but excluding the double
leak there,

R, =1+ L = 1/F3(r,gn ohms Z (183
1 u
g+ - 1
r+
m
or
G, = 1 = Fi(r,gh mhos Z (186)
1 u
T+
g+ 1
r+
In
Adding the leaks at 2,
G.=g+ b 1 = 1/F (g, ohms £ (187)
"
r+ I
g+ - 1
r+
n

or,
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Ry = L = F (g, ohm £ (188)
1 »
g+ - g
r+—
g+ i
r+
m
Shifting the measuring point to 3, but excluding the leak there,
Ri=r+! - = 1F@en ohms Z (189)
1 »
g+ -—j
r+ - 1
g+ —
r+
In
or,
G; = LA = F(r,g)1. mhos £ (190)
1 a
r+ - 1
g+ 1
T4+
g+ — i
r+ -
In

Terminating the line at 3 with a single leak g/2
G"s = § + Furgn mhos £ (191)
"

It is evident, from the above, that measuring from any junc-
tion N, between its two leaks,

G'y = g 4 Fox_1(r,g)1 mhos £ (192)
"
Applying formula (563), Appendix B, to this, we have:

G'y = \/5 cosh v-tanh (2Nv + v') mhos £ (193)

where o
v = sinh™! \/2gr hyps. £ (194)
and )
m \/-l-’ — sinh v
v = tanh“( _vgosh , ) = tanh—! (g"o (:Ydsh z-)

hyps. £ (195)
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Since § g risof the zatuse of a surge admittance. we may denote
pe

it h:-' P4

soand 193 recnrmes:

'y =3 mwebo-tarh 2Nr — " mhos £ (196)

If we rake o= ;7 anshe mhos £ 1197;
;¢ = ;,rankh 2N~ — 17 mhos £ :198)

where
v’ = tanko | -l = tanh~’ Q;) hyps. £ 199

This is the eounterpzet of formula 164 . for a II line. If the
line is grounded at B through any impedance less than r. (199)
will be uninterpretat.le Zor real values. unless we make

Pg— hyps. £ (200)
when 198, becomes
G’y =g.coth 2Nr — v = ; coth éx mhos £ (201)

»”” will then be the position angle at junetion 0. or B. 2Nr will be
the angular distance of junction N freom B, hence at junction .\’

oy = 2Nv — " hyps. £ (202)
and
R”y =r.tanh :2N¢r = "". =r; tanh éy ohms Z (203)

which agrees with 7126 and : 169 . Consequently, the impedance

at and beyond any junction of a 11 live i3 the :ame as at the corre-

sponding position angls of the smooth line hacing the same©, 1o and o,
the measurement being made between the two leaks of that junec-
tion. Whene = 0,0 = 0; whene =r.. v’ = «; wheneo = «,
’”

v =j,. Froms =0toe=r ./ isreal. Fromo=rotoo = «,

” M x
rloeontaing j .

The angle subtended by a 11 seclivn is the same as that subtended
by a T section of the same line impedance t and leak admittance g;
namely, see (170).

L
o =2sinh-t (V) =20 hyps. £ (204)

The surge admiltance g, of a 11 line is formed from its apparent
surge admitlance \/g.t in the same way that the surge impedance
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ro of a T line is formed from its apparent surge impedance \/ r/g;
viz., by using the factor cosh v; or

go = \li'cmh v =g"ocoshy mhos £ (205)

whence .
ro=1"9/coshv = ¥’osechvy ohms £ (206)

where 7"’ is the apparent surge impedance 4/r/g of a section of
II line. .

The lumpiness correction factor for the section angle of a 11 line
18 thus identical with that for the section angle of a T line; but the

L-z km.
1300 0.0015
1300 0.0013
8 H
r-3 a
R 0.0011 A
g g
] a
2 £
< o 0.0009 $
o H
4 ¢ 3
_ 0.0007
3
wo  Ox= byps. = 0.0006
. 5 Joaction 4 3 2 1 0
© z wm 8§ 8 8 8 8

F16. 40.—Line impedance and admittance at and beyond junctions of a
loaded M line, as well as at corresponding position angles of the conjugate
smooth line.

correction factor (sech v) for the surge impedance of a Il line 1s the
reciprocal of that for the surge impedance of a T line (cosh v).
Fig. 40 gives the graphs of line impedance and admittance for
the case of the five-section loaded 11 line of Fig. 44. The sec-
tion line impedance is r = 500 ohms, and leakance g = 0.00025
mho. The uncorrected or apparent surge impedance is r'/p =
4/500/0.00025 = /2,000,000 = 1,414.2 ohms. The uncorrected
or apparent section angle is /500 X 0.00025 = v/0.125 =
0.35355 hyp. The corrected section angle is, by (184), 6 =

2 sinh—l(‘-("_élzf?) = 2sinh~! 0.17678 = 2 X 0.175868 = 0.351736
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hyp., and the angle subtended by the whole line is 1.75868 hyps.
The corrected surge impedance is, by (206), 1,414.2/cosh
0.175868 = 1,392.6 ohms. The load of 750 ohms at B subtends
an angle of ' = tanh—! (750,/1,392.6) = 0.60212 hyp., which
added to the successive values of 6. at junctions, gives the posi
tion angles 6y at junctions. The line resistance then varies a
the tangent, and the line conductance as the cotangent, of these
angles.

In Fig. 40, the curve ARB follows the line resistance of the con-
jugate line, having © = 1.7587 hyps. and ro = 1,392.6 ohms. Such
a line would possess a total conductor resistance, by (35), of
1.7587 X 1,392.6 = 2,449 ohms, and a total leakance, by (36},
of 1.7587 + 1,392.6 = 1.263 X 10~* mho; whereas the artificial
line has an aggregate line resistance of 2,500 ohms, and a total
leakance of 1.25 X 10~ mho. The zigzag line connecting 4
and B follows the line resistance over the II line. If measured

N 41 N N-1

Fro. 41.—Diagrammatic_representation of a I line with double leaks
at each junction for the insertion of an ammeter A between successive
sections.,

between the leaks at each junction, the resistance coincides with
the corresponding points on the curve ARB. The heavy black
curve A'G'B’ follows the graph of line conductance, along the
conjugate line, and, at any point thereof, is the reciprocal of the
corresponding value on the curve ARB. The zigzag heavy line,
oscillating about A’G’'B’, follows the line conductance over the
II line.

The curve ARB follows (203), and A’G’B’ (201), at all
points along the conjugate line. At section junctions, the
oscillating values on the II line fall into coincidence with these
smooth curves, provided that the measurements are made be-
tween the two leaks of a junction, as indicated in Fig. 41. In
practice, it is customary to merge these two leaks g/2 into one of
g mhos, asin Fig. 33. Insuch a case the agreement of line resist-
ance and conductance at junctionsis only realizable arithmetically.

Line Admittance and Impedance on Each Side of a II Junction.
—Theoretically, as above considered, the line impedance or
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admittance as measured at any junction of a line should be taken
from a point where the two leaks, each of g/2 mhos £, are sup-
posed to be applied at that junction. Since, in practice, these
two leaks are ordinarily merged, it is important to consider
the line admittance on each side of a junction.

Let Gy be the admittance on the down-energy or motor side of
junction N (mhos £) and G’y the corresponding admittance on
the up side (mhos £) including the leak at N; so that

Gv=g+Gy mhos £ (207)
Then, by (186) and (190),

_ _ /g sinh {(2N — 1)v + o'}
Gy = qu_l(r,g):_ = \/ “eosh (2Nv +7) mhos £ (208)

and by (556) this is

g, cosh{(2N — 1)v + +”} \/ g cosh (35 — 1)
\ﬁ' sinh @Nv + ")~ Nr  sinhéy mhos £ (209)

where
/= -1 (V) g = -1 (9
v’ = tanh (go')’ v tanh (To) hyps. £ (210)
and
v = sinh™! (}{21'_g> hyps. £ (211)
so that
_ _ s sinhédy _ sinhéy coshv
Ry=1/Gy=1" cosh (y—1) =70 ,och (5a—1) -ohms £ (212)

Again, by (187),
' _ cosh (2Nv + v') ‘
Gs—l/FzN(g,r)_: =1/ \/ sinh{(2N+ 1oL/ }mhos Z (213)

g sinh{(2N + 1)v + v/}

r  cosh (2Nv + v') mhos £ (214)

by (557) and (562)

\/g cosh{(2N+1)v+v""} \/z ,cosh (3n+v)

sinh (2Nv+v") r sinh 3y mhos £ (215)

, sinhéy _ sinh éy cosh v

R'v=1/G'x=1" cosh (8x+2) ~ ' cosh (5x+v)

ohms 2 (216)
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The reciprocals of (209) and (215) give, in (212) and (216),
the corresponding line impedances on each side of junction N.

As an example, we may take the case of the II line shown in
Fig. 44, loaded at its motor end with ¢ = 750 ohms, or v =
1.3333 X 1072 mho. Required the admittance on each side of
leak 2.

Here

Sy = 1.30559, 6y — v = 1.12972, éy + v = 1.48146.
1 cosh 1.12972

Gy = 11414.2 sinh 1.30559 =0.000 706 91 mho, Ry =1,414.6 ohms
and

v _ 1 cosh 1.48146 =n - =
G'y= 1414.2 sinh 1.30559 = 0.000 956 91 mho,R’y =1,045.0 ohms.

The arithmetical mean of these admittances is 0.000 831 91 mho,
which is the admittance at the corresponding point on the con-
jugate smooth line, or the admittance as measured between leaks
at junction 2.

Arithmetical Mean of Line Admittance on Each Side of a
Junction.—If we apply formula (509) of Appendix A to (208)
and (215) we obtain

G~+G_’y_\/g _cosh(éy+v)+ cosh(dx—v) _ ,, cosh sy cosh ¢
2 " Nr 2 sinh by ~¥ % " sinh &y
mhos £ (217)

=g"o cosh ¢v-coth 8y = gocoth 6y =G’y mhos £ (218)

which, by (201), is the line admittance at junction N between
- leaks, or at the corresponding position angle on the conjugate
smooth line. This is also evident from (192) and (207).

Consequently, the arithmetical mean of the line admittances on
each side of a junction (their planc veclor mean in an a.c. case) 18
equal to the admittance between leaks at the junction, or to the ad-
mittance at the corresponding position angle of the conjugate smooth
line.

Potentials at 11-line Junctions.—If 1'y is the potential at junc-
tion N (volts £), and Vy_,is the potential at junction N — 1,
then it is evident that the ratio of these potentials is the ratio of
the line impedance on the down side of .V to the line impedance
on the up side of ¥ — 1. Hence
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cosh (6y — v)

VN_l G)v sinh 6N .
VA"" =-6}N_—_l = é‘osh-(m numeric Z (219)
N sinh 5)v_1—-"
But
Sy—1+v=20y—v hyps. £ (220)
so that

Vle - sinh ON—1
Vw sinh éy

or the potentials at II-line junctions are as the sines of their posi-
tion angles, and therefore the same as at the corresponding position
angles of the conjugate smooth line.

Line Currents at II-line Junctions.—Since the potential Vy
at any section junction has been shown to be the same as at the
corresponding position angle on the similarly loaded conjugate
smooth line, and the line admittance G’y between leaks at that
junction is the same as at the corresponding conjugate-line posi-
tion angle, it follows that the line current Iy = VyG''y, between
leaks a:c that junction, is also the same as at the corresponding
conjugate-line position angle. If, as usual, there is only one leak
at the junction, then the arithmetical mean of the line currents on
each stde of this leak is equal to the line current at the corresponding
conjugate-line position angle.

Summary of Facts Concerning a II Line.—All of ‘the preceding
propositions concerning a line, loaded at its motor end with any
impedance up to infinity, can be included in the statement that
a 11 line has at 1ts junctions all of the electrical properties of its
conjugate smooth line, on the assumption that the leaks at those
junctions are double, and the measurements are made between
them, as in Fig. 41.

If the leaks at junctions are single, then this correspondence
of electrical properties is complete in regard to potential and
power; but involves arithmetical mean values (a.c. plane-vector
means) in regard to current, and line admittance.

Figs. 42, 43 and 44 rcpresent the distributions of potential,
current, conductance and resistance over the five-section II line
already considered, and over its conjugate smooth line, for
0=0 0= «, and o = 750 ohms respectively. All of the
numerical values indicated are obtainable either by the hyper-
bolic-function formulas above stated, or by direct Ohm’s law
computation.

numeric Z (221)
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Properties of T Lines at Mid-sections.—We have already seen
that the electrical properties of T and II lines at section junctions
coincide with those of corresponding points on the similarly
loaded conjugate smooth lines; but there are also certain elec-
trical correspondences at mid-section points which may be
usefully considered.

Potentials at T-line Mid-sections.—Let Vy be the potential
at mid-section N; i.e., at the leak on the down energy side of junc-
tion N, and where the potential is Vy volts Z. Then

, sinh {(2N — 1)v + ¢’}
Ve R _"° cosh (2No+¢)
Vx Ry  r’ocoshe-tanh (2Nv + »')
1 sinh {(2N — 1)v + v/}

cosh v sinh (2Nv + ¢')

_ 1 sinhéy .
= coshs sinh b, numeric £ (223)

numeric £ (222)

If we denote by V. the potential at the corresponding mid-
section position on the conjugate smooth line, where the position
angle is oy hyps. Z, then

Ve = Ver Vew-sechv  volts £ (224)

cosh v
That is the potential at the mid-section of a T line is the potential
at the corresponding mid-section point of the conjugale smooth
line, multiplied by the secant of the half-section angle v.

As an example, the potential at leak III or mid-section 3 of
of the T line in Fig. 37 is found from the position angle at this
point, 8;;; = 0.87934 hyp. The potential at this [;loint on the
. .. , sinh 0.87934
conjugate smooth line is by (98), Ve = 100 sinh 1.75868 —
35.406 volts. The semi-section angle v = 6/2 = 0.175868, sech ¢
= 0.98474; 8o that V,;; = 35.406 X 0.98474 = 34.866 volts.

Line-current at T-line Mid-sections.—We have already seen
(178) that the current Iy at junction N may be written

_ y cosh dy
Iy =1, cosh b amp. Z (225)
and similarly at junction N —1
cosh dy_1

I~—1 =1c"

cosh 8, amp. £ (226)
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where I is the known current at some point on the conjugate
line, or some other junction on the T line, where the position
angle is 6c. At a mid-section, the current in the line suddenly
drops from Iy to Iy_;, owing to the presence of the leak. If we
define the mid-section current Iy as the arithmetical mean of
these two, then

1 N = COSI; 60 00811_557 i2—c——08h 6N_l amp. Z (227)
But

8y = 8y + v and éy—1 = 6y — v; so that by (509),

Ix I -cosh éy-coshy amp. Z (228)
osh 6

But the actual line current at position angle 8y on the conjugate
smooth line is

I, '
I.x = cosh 8¢ cosh oy amp. Z (229)
so that
Iy = I.x cosh v amp. Z (230)

The T-line mid-section current is thus equal to the line current at
the corresponding point of the conjugate smooth line, multiplied by
the cosine of the semi-section angle v.

Power at T-line Mid-sections.—It follows from (224) and
(230) that the power Vy - Iy in volt-amperes at any mid-section
18 equal to the power at the corresponding point on the conjugale
smooth line. (See (383).)

Line Impedance at T-line Mld-sectxons.—ledmg (224) by
(230) we obtain

= R.x sech®v ohms £ (231)

The particulars concerning T-line mid-sections and their corre-
sponding conjugate-line points are indicated in Fig. 45. It will
be seen that the agreement is complete at section junctions, but
is incomplete at mid-sections.

Properties of II Lines at Mid-sections.—The electrical con-
ditions at II-line mid-sections are related to those at correspond-
ing conjugate-line points in a similar but inverse manner to those
already found for T lines.

Potential at II-line Mid-sections.—Since the potential at
junction N is the same as at the point on the similarly loaded
conjugate smooth line, whose position angle is 5y hyps., we have,
by (221),
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Ve
VN = si—nh—é_c - sinh Sn volts £ (232)
Vyar = Ve_ - sinh 6y volts £ (233)
¥=1"" ginh §, -t

where V¢ is the potential at a point whose position angle is éc.
Then
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F1a. 45.—Electrical conditions at junctions and midsections of a T line

_ and at corresponding points on the conjugate smooth line.

Ve = Va+ Vw1 Ve sinhdy + sinh éy volts Z (234)

2 "~ sinh &’ 2
= _ Ve  sinh (3x + ) + sinh (éx — )
=sinhd, ) volts £ (235)
Ve . ) . )
= sinh 5" sinh &y - coshv = V. cosh v volts £ (236)

Thus the potential at a Tl-line mid-section is equal to the potential
at the corresponding conjugate-line point, multiplied by the cosine
of the semi-section angle. In other words, the potential at a Tl-line
mid-gection is always factored as much greater than that at the
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oyrrerparding corjugate-linge point. i 224 pedeelind 3d he wemils
T-line mid-section 12 Sactored leiz. the ore bring Vg cosh rooand
the ctker V.g coshr = V.g sech -

Line Impedance and Admittance at II-line Mid-sections.—
I{ we deniote the line impedance at mid-section N &y Ry. we have
v 20

Ey = B, — r 1 r r smh_o‘- r ohms Z 237

276,727 \g cosh 5y —r 2
_ r sinhéy N TE
\g cosh 4y —r 2
, sinh g - r .
=r. N 9T _ nhr
cosh oy
ohms Z :23%:
=r"". tanh 35 cosh v =r; tanh 65 cosh® r=R.5 cosh®r
ohms Z :239:
The line rexistance at a T-line mid-secion iz therefore equal to
the lire resixtance at the correzponding conjugatedine pornt. mul-
tiplied by the square of the cosine of the semi-scctional angle.
The: line admittance at mid-section N is the reciprocal of R,

or

;s = 4", coth 55 sech v = g: coth 6y sech? r = G5 sech® ¢
ohms Z (240}

Line Current at Ii-line Mid-sections.—From the preceding
equations "236: and 240, it follows at once that

Is = Vyeosh e £ G.gsech? vt = VgGGysechramp. £ (241}
= Lysechr amp. Z (242)

or the ling currend at mid-section N -ar anywhere in this line sec-
lior, ix equal to the line current at the conjugate-line point corre-
zponding to Ny multiplied by the sccant of the semi-section angle v.

Line Power at II-line Mid-sections.—It follows directly, from
‘236 and 242 | thar the power in the II line at a mid-section. or
the rate in joules per second at which energy is being carried past
this point, i<

Py =VygIg=Vegcoshv-Tgxseche = Vg Ixg = Pex
watts  (243)

That is, the line volt-amperes at any 11-line mid-seclion is equal to
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the volt-amperes at the corresponding conjugate-line point. (See
(383)). :

Hence in any T line or 11 line, the power agrees with that at
corresponding conjugate-line points al lerminals, at section junc-
tions, and, so far as concerns the voli-amperes, at mid-sections.

As an example, consider the power at mid-section II in Fig.
44. The power at this point on the II line is 26.794 volts X
0.023006 amp. = 0.61642 watt. At the corresponding point on
the conjugate smooth line, the power is 26.384 volts X 0.023363
amp. = 0.61641 watt.
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F1G. 46.—Electrical conditions at junctions and midsections of a IT line
and at corresponding points on the conjugate smooth line.

The relations between the conditions at II-line mid-sections and
at corresponding conjugate-line points, are shown in Fig. 46,
for reference.

Fall of Potential Compared on T, II, and Conjugate Lines
Compared.—Fig. 47 represents graphically the fall of potential
along the T line and II line of Figs. 36 to 38, 42 to 44, as well
as along a smooth conjugate line. Strictly speaking, it is not
possible to have one and the same smooth line conjugate to both
a T line and a II line, unless the r and g in the sections of cach are
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different, owing to differences in ro, but the discrepancy is very
small in this case.

It will be seen that taking the “Line Free’’ graphs, the dotted
curve represents a true catenary for the conjugate smooth line.
Contacting with this catenary at junction points, are the internal
polygon representing the II-line potential fall, and the external
polygon representing the T-line potential fall.

100

1
I1 Line
------ 8mooth Line
=+=0=-— T-Line

)
1

10

|
0 | }
S A\ 4 1 Iv 3 111 2 11 1 1 C
Distauce Position along Line from Distant End

Fia. 47.—Fall of potential on artificial and conjugate smooth line.

These curves indicate that it is possible to arrange two loaded
flexible massless strings with suitable masses, in such a manner
that both of them shall contact with a common catenary; one
of them forming an internal string polygon, and the other an
external string polygon.

Fall of Current on T, II and Conjugate Lines Compared.—
Fig. 48 represents graphically the fall of current along the T
line of Figs. 36 to 38 and along the conjugate smooth line. The
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F1a. 48.—Currents in artificial T line and in conjugate smooth line.
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F1a. 49.—Currents in artificial II line and in conjugate smooth line.
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dotted smooth curves apply to the smooth line in each case. The
zigzag T-line current graphs coincide with the smooth curves at
section junctions.

In a similar manner, Fig. 49 shows the corresponding II-line
current graphs. Here the mean ordinate at junction points
coincides with the corresponding smooth curve.

Artificial Line of Indefinitely Great Number of Very Small
Sections.—If a section of lumpy line is large; i.e., contains s
relatively large lump of resistance r and a large associated lump
of leakance g, the lumpiness correction factor in angle

Si"*“'(‘\/zrg) sinh-v
k, = - - L MU e imeric Z (2H)

(‘\/l'g Va

2)

tends to be considerable, and in some a.c. cases may be enormous.
The correction factor in surge impedance, either cosh v or sech ¢
as the case may be, is also capable of assuming large propor-
tions. As, however, the subdivision of the lumpiness is effected
by placing the same total artificial-line resistance and leakance
in more numerous scections, both r and g are reduced so that
the value of k. diminishes toward unity. Finally, when the
successive sections are all exceedingly small and indefinitely
numerous, both r and g tending toward zero, the limit of &,

31 R )
(sl nh ta) -1 numeric  (245)
ta ta=0

or there ceases to be any correction factor, and the minute ap-
parent angle v, subtended by a half-section is not to be dis-
tinguished from its actual semi-angle v. At the same time the
values of cosh # and sech », as v approaches zero, tend to the
value unity; or the apparent surge impedance by (143) becomes
the true surge imepdance ro. Such a line, however, with in-
definitely numerous and indefinitely small lumps of impedance
and leakance is, however, a smooth line, which evidently has no
lumpiness error.



CHAPTER VII '

EQUIVALENT CIRCUITS OF A SMOOTH LINE

In the analysis of the line impedance at any point of a lumpy
artificial line, alternating continued fractions naturally present
themselves, as was recognized by Mascart in 1883,* and by
Herzog and Feldmann in 1903.f The solution of such con-
tinued fractions by means of hyperbolic functions in 1908,}
led in the same year to the conclusions reached in the last chap-
ter, that any T section of artificial line completely replaces, at
its terminals, a certain length of conjugate smooth line, and also
similarly for a I section. It followed at once from these proposi-
tions,** that conversely, any length of continuous smooth line
may be completely replaced at its terminals by a certain T, and
also by a certain II of artificial line. This converse proposi-
tion is very important. The T section equivalent to a smooth
line is called the ‘“equivalent T,” and the corresponding II sec-
tion the ““equivalent 11"’ of that line. It has been demonstrated
algebraically elsewherett that the equivalent T and II of a ter-
minally loaded line, offers both the same sending-end impedance,
and the same receiving-end impedance, as the conjugate smooth
line. Without repeatinmg the demonstration here, it may be
pointed out that the results as to substitutibility of real and arti-
ficial-line sections, obtained in the last chapter, indirectly fur-
nish such a demonstration. Moreover, we shall notice some

* MascarT and JoUuBERT's ‘‘Treatise of Electricity and Magnetism,”
Paris, 1883, vol. i, p. 211 (resistance of a conductor when there is loss by
the sides). .

t J. HErzog and C. FELDMANN, ‘‘Die Berechnung Elektrischer Leitungs-
natze,” J. Springer, Berlin, April, 1903, vol. i, Chapter V, p. 328.

1 “The Expression of Constant and of Alternating Continued Fractions
in Hyperbolic Functions’ by A. E. KENNELLY, Am. Annals of Mathematics,
Salem Press, vol. ix, No. 2, pp. 85-96, January, 1908.

** ¢ Artificial Lines for Continuous Currents in the Steady State,”” by
A. E. KENNELLY, Proc. Am. Ac. Arts & Sciences, vol. xliv, No. 4, pp.
97-130, November, 1908.

tt“The Application of Hyperbolic Functions to Electrical Enginecring
Problems” by A. E. KENNELLY, London University Press, 1912, Appendix D.
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numerical cases of substitution which will supply additional proof
arithmetically.

The Equivalent T.—Fig. 50 shows diagrammatically, at AB
a smooth line of conductor impedance R ohms Z, and total leak-
ance G mhos Z. This line, therefore, possesses an angle of ¢

0=80 =L [ro =La
[

- - (P42 =Z o cosh
—'-.lnh‘P.'%l-nnh’ 20= l:(P+0R)' Zo T
2 'F'— . = p ocoth =R sinh [}
=sinh ' [-C =tanh”

- [ st
«sinb’? 2;.’0 7 tanh™’ P'+2R

. , -t . [
e ai” (B tan” Tahg =R tanh

nlw
b

Nominal T

F=2ztanh &  p'=z, tann &
2 o 2

-0
nla
»[Zlﬁ
4
N—"

=9 qus 02

x4
1

Equivalent T

F1a. 50.—Relations between equivall_ent circuits and their conjugate smooth
ine.

hyps. Z,and a surge impedance z, ohms £, as well as its reciprocal,
a surge admittance yo mhos Z. See formulas (18) and (26).
At A’OB’, is the “nominal T of the smooth line AB; t.e.,
a T section of impedances having in its clements the nominal
values B and G. Thus, the impedance in the line section is R
ohms £, and the leakance in the single central leak, G mhos Z.
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This nominal T has a lumpiness error, and cannot correctly re-
place the smooth line. It is only a stepping stone to the “equiva-
lent T,” a’ob’, which can correctly replace the smooth line.
The correcting factor for the line branches is

tanh g
ko, = - 0 numeric Z (246)
2
while the correcting factor for the staff leak is
ko, = _s_m;l_o numeric £ (247)

Applying these factors to the respective elements of the nominal
T, we find that each branch of the equivalent T has an impedance

p' = zo tanh g ohms Z (248)

while the staff of the equivalent T has an admittance
g’ = yosinh 0 mhos £ (249)

the impedance of the staff 1/g’ may be denoted by R’.

The Equivalent II.—The ‘““nominal 11"’ of the smooth line AB,
Fig. 50, is indicated at A’’B’’, the line element having the con-
ductor impedance R, and each leak having half the line leak-
ance G. Lumpiness correction factors must now be applied to
these elements in order to produce the “equivalent 11’ a’’b"”,
which is capable of completely replacing, or of being substituted
for, the smooth line AB, in any single-frequency steady state.
The correcting factor for the line element is

ko,, = an ;1 6 numeric £ (250)
and the correcting factor for each semi-leak is
tanh ;
k,,, = 0 numeric Z (251)
2

It is evident that the correcting factors which convert the nominal
II 7nto the equivalent 11 of the conjugate smocth line, are the same as
those which convert the nominal T inlo the equivalent T, but in
tnverse order; so that k,,, = k,,, and k,,, = k,,.
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The corrected elements in the equivalent II are then found to
be
p'' = zosinh 6 ohms 2 (252;

and g’ =y tanhg mhos £ (233

The impedance of cach leak 1/g’’ may be denoted by R’’.

Relations between the Equivalent T and II.—It can be shown
that having derived one of these two equivalent circuits of s
smooth line, the other can be derived by direct computation.!
Thus, if the equivalent T is given, the equivalent IT can be d-
rectly computed, and will be found in agreement with the value:
given in (252) and (253). This is from the known equivalence
and general substitutibility of a star and a delta of impedances;t
so that one can be replaced by the other in any single-frequency
steady electrical system, without disturbing the potentials, cur-
rents or powers in the rest of the system.}

When 6 becomes indefinitely small, both the correcting factors
sinh 6 tanh (6/2)
g BnC (0/2)
smooth line is extremely short, its nominal T or Il is also tts equira-

lent T or 11, which is indeed an almost self-evident proposition.

become unity. This means that whena

sinh 6
When 6 is large and real, becomes large with respect

0
tanh (8/2)

(6/2)
In a.c. cases, with 8 complex, both these correcting factors are
capable of rapid oscillations in value, as 6 changes.

In all c.c. cases, the equivalent T and II are always physically
realizable. That ig, their elements are always resistances, which
are capable of being designed and constructed. In a.c. cases
however, it frequently happens that either the equivalent T,
or the equivalent II, is physically unrealizable, and sometimes
both. That is to say, the values of impedance called for in the

to unity; while becomes small with respect to unity.

* “The Application of Hvperbolic Funetions to Electrical Engineering
Problems,” by A. E. KexvyeLLY, London University Press, 1912, Appendix E.

t **The Equivalence of Triangles and Three-pointed Stars in Conducting
Networks,” by A. E. KeNNeLLy, Electrical World and Engineer N. Y., vol.
xxxiv, No. 12, pp. 413-414, Sept. 16, 1899.

t FeLbMany and HEerzoc, Proc. Int. El. Congress, St. Louis, 1904,
vol. ii, seetion E, pp. 689-709, *“‘ The Distribution of Voltage and Current
in Closed Conducting Networks."”
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respective elements may have slopes greater than 90°, and
therefore cannot be reproduced in simple series groups of resistors,
reactors and condensers. Such cases may be regarded as
arithmetical equivalent circuits, but not as physical equivalent
circuits.

Reversion from a T or I Section to Its Conjugate Smooth
Line.—Having given a T section or a II section, there must bhe
some conjugate smooth-line equivalent thereto, and it becomes
requisite to know the angle 6 subtended by the section as well as
its surge impedance 2z, or admittance yo,. This is the problem
that presents itself in the use of any given artificial line. It is
called the reversion to the conjugate smooth line.

Reversion, as the name implies, calls for the reversal of the
procedure which determines an equivalent circuit from its con-
jugate smooth line.

Thus considering the equivalent T represented in Fig. 31, we
know from (248) that the total line element is defined by the
relation

r=2z tanhg ohms £ (254)
and by (249)
., 0 6
_ sinh 6 _ 2ﬁs_mlf 2 cosh 2
N 20 N 20

2 mhos £ (255)
where 6 is the angle, and 2, the surge impedance of the conjugate
smooth line imitated by the section.
Multiplying (254) and (255) we obtain
. rg_Vrg
2 2 2
Dividing (254) by (255) we obtain

., 0 . .
sinh 9 = \/ numeric £ (256)

]
20 = \/; X cosh 9 ohms £ (257)

Again, considering the equivalent II represented in Fig. 32,
we know from (252) that the line element is

r = zosinh 8 = 2z¢sinh g cosh g ohms £ (253%)
and by (253)

tanh o
' 2 mhos Z (259)

2 20
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Multiplying (258) by (259)
.0 [rg_+rg . .
sinh 5= \/2 2= "3 numeric £ (260)
and dividing (258) by (259) ’

2z —\/rX"_l‘ = /rXsecho
0 =l =/t oh -
g COShg \g 2 ohms £ (261)

or Yo = \/f X cosh; mhos Z (262)

The following formulas (263) to (266), for reversion, are also
useful.

Reversion from a T to Its Conjugate Smooth Line.—As shown
in Fig. 50, and as explained in reference to (170) where r = 2y
and g = ¢’

0 _ —l\/'.g’__ b1 !g_ -1 ' r'g
2 =y=sginh Py =sinh \/2 5 =tanh T+og
hyps. £ (263)

Also, as explained in reference to (171),

= coth ® =R sinh 6= « |2 "=\/i. 9 _ 2 cosh!
=p cothz—R sinh 8= P cosh2 gcoshz—z'o cosh2
ohms £ (264)

Reversion from a II to Its Conjugate Smooth Line.—As shown
in Fig. 50, and as explained in reference to (204), where r = p”
and g = 2¢",

R P07

. o
g=v=sinh“ \[p"-—” = sinh~! /58 = tanh—1 ([ 29

2 2’2 5 o
hyps. £ (265)
Also, as explained in reference to (205),
e[
20 R p" + 2R"
_ pn 0_'7P"__ _-PT..._O_:\/I. '_0__ ” 0
= R’ tanh 9 = sinh 8 —\/ 29" e.e(h2 g sech2 =2 sech2
ohms Z (266)

General Relations in Reversion.—It can be shown that just
as there is onc and only one T and II which can replace a given
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smooth line at any one frequency; so, conversely, there is one
and only one smooth line which can replace a given T or a given
II. It frequently happens, however, that the conjugate smooth
line so determined cannot be physically realized. In other
words, the conjugate smooth lines of some T's and IIs are only
arithmetically realizable.

To any actual smooth line, operated by direct currents (zero
frequency), in the steady state, there is one and only one equiva-
lent T and II. In the case of a.c. lines, however, 8 varies with
the impressed frequency, and the correcting factors, k,,, p,,,,
kg, k,,,, all vary with the frequency. Consequently, an arti-
ficial line of T's, or IIs, or both, which is a correct counterpart of
some smooth line at a given frequency, ceases to be its correct
counterpart when the frequency is changed. In other words,
there 18 only one frequency at which a given artificial line can cor-
rectly represent an actual smooth line. The amount of error which
will attend a change in impressed frequency will depend upon
the lumpiness of the line. In general, the fewer the sections,
and the greater the corresponding lumpiness in an a.c. artificial
line, the greater the errors introduced by changes in impressed
frequency. It is for this reason that it is preferable to divide an
artificial line into a number of small sections. If it were not for
the effect of changes in frequency upon the imitative accuracy
of an artificial line, it would be manifestly easier and more con-
venient to employ a single T or a single II as the equivalent. It
is, however, easy, as we shall see later, so to design an artificial
line for the embodiment of a given actual smooth line, that for a
given range of impressed frequency, the range of discrepancies
in voltage, current, or power, shall be kept within assigned
small limits.

Example of Equivalent Circuits.—A convincing numerical ex-
ample of the substitutibility of an equivalent T or II for its con-
jugate smooth line, is furnished by the case of a d.c. line voltaged
at both ends. :

Fig. 51 represents the case of a line A B, 200 km. long, having a
linear resistance r = 6, and a linear leakance g = 1.5 X 107¢;
so that its total conductor resistance is 1,200 ohms and its total
dielectric leakance 0.3 X 10~2 mho; hence its line angle § =
0.6 hyp., its linear angle a = 0.003 hyp. per km., and its
surge impedance ro = 2,000 ohms. The line has a potential of
4100 volts applied at A, and a potential of +90 volts applied
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at B; so that the two batteries oppose each other. In such a
case, provided that the two impressed terminal potentials are
not too far apart, there will be a point of minimum potential
somewhere on the line. Let z be the distance of this point in
kilometers from A, and 6, the corresponding distance in angle.
Then, by (77), the potential at X will be:
VA VA

- cosh 6, = cosh az volts  (267)

Vx

This will be the same potential as is established over L — z kilo-
meters from B, or

‘ - D
mu | l I r : ' x| Bl
| ; 1
| [_ \ i
P I S S T R o
H ! | i
£ | | | : g
Seol— ~—— b - — — | - 6 =
a | | | 3
3 ! | 3
SO— - - — 5 — 0
Z . | I | i
L Pt | | | » [
m ~ - - — — —_— S o ——
]

A ' 0,-0'.4;:5:5 | ! : X 0.&11'.3:5 B
W ema = 8 8 8 § = 8 50
- o = 0,003 h)'p./lun. 8 3
= 0 =06 =
= ro= 2000 Q 3
= e
= %

F1a. 51.-—Smooth line voltaged at both ends.
, V |4
x = X p volts (268)

~ cosh 6, cosh a(L —7)

Solving (267) and (268) for r and Vx, we obtain:

xr = 160.892 km., L — x = 39.108 km., 6, = 0.482675 hyp.,
6. = 0.117325 hyp., and 7'y = 89.384 volts. The fall of poten-
tial is indicated in Fig. 51 by the catenary curve A’VX'B’,
with its minimum at X’. For electrical purposes, the line may
now be regarded as cut at X, because no current can flow at this
point. The entering current at A, using (131), is then found to
be 0.022 4192 amp., and at B, 0.005 2555 amp. The curve aIXb
indicates the strength of current along the line, current flowing
toward B being taken as plus.
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Incidentally, it may be pointed out that if we know the poten-
tial and current at B, the case may be readily worked out by the
use of position angles, as described in Chapter IV. Thus with
Vs =90, and Iy = —0.0052555, the line is virtually grounded

6=0.6 To= 20000

R = 1200
e B
A\ J
'
G=108x1070
Smooth Line
Nominal II
R= 12000
”n ”
A B
° °
& o
L0 wla$ X
< S
G ¢

5 = 1.061089
tanh 0.3 _
“:T = 0.971043
)
R ’ ul b’l
° S
g g
& ¢
Equivalent T Equivalent II
Fia. 52.—Equivalent circuits of a line with 0 = 0.6, r, = 2000 ohms.
at B through a negative resistance s = - 9(2' = —-17,125
—0.0052555 !

ohms. This virtual resistance subtends an angle tanh-!
—-17,125 _ . - .
2,000 ) = tanh~! (~8.5625) = —0.117325 + jo; so that
ox = J ;' and §, = 0.482675 + j;- The potentials, currents,
7
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impedances, and admittances now follow respectively the sines,
cosines, tangents and cotangents of the position angles all along
the line, as already described.

Fig. 52 shows at AB a diagram of the smooth line considered.
At A'OB’ is its nominal T, and at A’”’B”/, its nominal II. The
lumpiness correcting factors are seen to be 1.061089 and 0.971043.
Using these factors, the equivalent 7 is indicated at a’ob’, and the

0T X928 812°0
U Losrie

Qs-

U L¥ 9989
Qg 0T XL S0

Fia. 53.—Equivalent circuits of smooth line in Fig. 51, voltaged at both ends.

equivalent IT at a”’b’’. In the equivalent T, the total line re-
sistance and leakance are 1,165.252 ohms and 0.318326 millimho.
In the equivalent II, the corresponding values are 1,273.306 ohms
and 0.291314 millimho.

These equivalent circuits are shown, in Fig. 53, connected to
100 volts at the A end, and 90 volts at the B end. The equiva-
lent T line is at a’ob’, in the upper part of the figure, and the
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equivalent II line is at a’’b”’, in the lower part. Considering the
equivalent T, if the A battery acted alone, with the B end
grounded, the current entering at A would, by Ohm’s law com-
putation, be 0.093 1012 amp., splitting at O into 0.078 5356 and
0.014 5656 amp. Similarly, if the B battery acted alone, with
the A end grounded, the current entering at B would be 0.083 7911
amp., splitting at O into 0.070 6820 and 0.013 1090 amp. Now
applying both batteries as shown, the summation current dis-
tribution gives 0.022 4192 amp. preponderating at a’, 0.005 2555
amp. at b’, and 0.027 6746 amp. through the leak toground. The
two entering line currents agree with those indicated in Fig. 51,
as obtained by smooth-line formulas.

Turning to the equivalent II, a’’b”, it is evident that 100 volts
acting, at a’/, through the leak of 0.145 657 millimho, produces
a leak current of 14.5657 milliamp. Similarly, 90 volts acting
at b’”’, through the leak of 0.145 657 millimho, produces a leak
current of 13.109 milliamp. The potential difference of 10 volts,
between a’’ and b/, acting through 1,273.306 ohms, produces a
current in the ‘“‘architrave’”’ of 7.85355 milliamp. The total
entering current at a’’ is thus 22.4192 milliamp., and at b”’, 5.2555
milliamp., again in agreement with the values obtained in Fig. 51.

It is thus evident that although the distributions of potentials
and currents are very different inside the II and the T of Fig. 53
and in either from those in the smooth line of Fig. 51, yet at and
outside the terminals of these equivalent circuits, all three systems
have identical distributions, and any one may be replaced by
either of the other two.

We shall see that the same principles apply in any single-
frequency a.c. case.

If, therefore, we desire to have an artificial line which shall
conform electrically to a given smooth line only at its two ends,
we may construct either its equivalent T, or its equivalent IT and
the problem is solved, no matter what the terminal conditions
may be. If, however, we desire to have the artificial line conform
electrically to the smooth line at one internal point, say the
middle point of its length, as well as at its terminals, then we
may divide the smooth line into halves, and construct an equiva-
lent T or II for each half. This will make an artificial line of
two sections. Proceeding in this way, the more sections we take
for the artificial line, the more numerous will be the points of elec-
trical agreement between it and the conjugate smooth line.
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Some of the sections of the artificial line may be T's and others
IIs; but it is preferable, for symmetry, to adhere to one type
only throughout. In the d.c. case, there is very little choice be-
tween the two types. In the a.c. case, there may be, as we shall
see, a slight advantage in favor of the II line.



CHAPTER VIII

THE DESIGN, CONSTRUCTION AND TESTS OF CONTINU-
OUS-CURRENT ARTIFICIAL LINES

Continuous-current artificial lines may be constructed:

1. To furnish an electrical model of some particular telegraph
line, with a standard or normal linear leakance.

2. To furnish an electrical model of a low-voltage d.c. railway
signal system, where a continuous signalling current is carried
over the two parallel rails of a railroad track, so as to respond to
the short-circuiting action of an advancing train.

3. To furnish a model for the use of students in an electrical
engineering laboratory, to familiarize them with the tests and
formulas pertaining to such lines, before proceeding to the less
simple and much more extensive field of a.c. line testing.

We shall take up the consideration of a particular example of
type (3). In this case it was desired to construct a five-section
artificial line,* which could be connected up by the students
either as a T line or as a II line, in order to aid them in forming
either of these subtypes.

A rectangular box was constructed of hard wood, well soaked
with molten paraffin wax. This box is 57.5 cm. (22.6 in.) long,
17.8 ecm. (7 in.) wide, and 10 cm. (4 in.) high. All of the elec-
trical parts and connections are fastened to the cover, which is
removable by means of a dozen woodscrews. A plan view of the
box and its cover appears in Fig. 54.

Three rows of brass strips are secn fastened to the top of the
cover, the upper row commencing with 1a, 1b, 1¢, and ending
with 5a, 5b, 5c. Between the members of each of these five
groups are connected resistances AA, each of 250 ohms, of No.
32 B. &S. gage “Ta-Ia” resistance wire, double cotton-covered,
anti-inductively wound and impregnated with paraffin wax.
These resistances form the line sections. The second, or middle
row, contains resistances B, B, each of 4,000 ohms, of the same

* “A Convenient Form of Continuous-current Artificial Line,” by A. E.

KENNELLY, Electrical World, June 14, 1913.
101
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kind of wire. These form the leaks. The third, or bottom row,
i8 a single brass strip gg, serving as the common ground connec-
tion of the line.

3a

[}-@w ]
4] o Baq
4d de le 0d 0e 0Of

HI‘IEF\]I’II’I"I

F16. 54.—Plan view of artificial continuous-current line arranged for one,
two, three, four or five sections either of 7'’s or I1’s.
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F1G. 56.—Four-section T line and four-section II line.

A single section of T-line connection is indicated in Fig. 55,
at A’B’, and a single section of II-line connection at A”’B”. A
four-section T line, and also a four-section IT line appear in Fig.
56. Pairs of electrically connected brass plugs serve to connect
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up the line into as many as five sections of the type desired. In
Fig. 57, the box is shown connected as a five-section T line.

The electrical behavior of such a five-section T or II line is illus-
trated diagrammatically in Figs. 36, 37, 38, 42, 43 and 44, for the
particular cases of grounding, freeing, and loading with 750 ohms

F1g. 57.—Continuous-current artif}'cilgl-line box connected as a five-section
ine.

at the distant end. In either case, the section angle is 0.35174
hyp.; but, for reasons already discussed in Chapter VI, the surge
impedance of the T sections is 1,436.1 ohms, while that of the I
sections is 1,392.6 ohms.

Potentiometer Tests of Artificial Line.—The test for fall of

A B
R & IV 4 114 8 11 2 I 1 (] 0

Y =E,

s G w

LK : ' Std.Cell

E
| o — i
F1s. 58.—Diagram of connections for potentiometer test of c.c. artificial
line of II sections.

potential along the junctions and mid-sections of the box, ar-
ranged as a five-section II line, loaded at B with a resistance of
o ohms, is indicated diagrammatically in Fig. 58. The battery E,
may be a steady storage cell, capable of holding say 2.0 volts at
its terminals during the continuance of the test. The resistance
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R at A, enables the potential impressed on the end 5 of the line,
to be brought within the usual 1.8 volts capable of being read
directly on an ordinary potentiometer. The slide wire of this
instrument is indicated as SW, the working battery at E, the
standard cell at e. As connected, the potential against ground
is being measured at junction 4.

The current strengths along the artificial line may be readily
measured by observing the potentiometer p.d. on each suc-
cessive line element 01,12,23,3 4, and4 5. The entering cur-
rent at A may likewise be measured by observing the drop of
potential in R.

The position angles along the line are determined from the load
o and the line elements, in the manner described in Chapter VI.
The potentials and currents at each successive junction and mid-
section are then computed by reference to tables of real hyper-
bolic functions. The observed and computed values are finally
recorded, and compared in parallel columns.

If the elements of resistance entering into the line are care-
fully measured in the first instance, if all of the plug contacts
and connections are good, and if the potentiometer measurements
are carefully made, it is customary for the student to find the
observed and computed values in agreement to the third and
sometimes to the fourth significant digit.

There is nothing which gives the student so complete a grasp
of the principles and formulas relating to a.c. artificial lines, as
preliminary tests on such d.c. artificial lines. It is important
to make these d.c. lines stepping stones to a.c. lines; because the
technique is easily grasped and followed, and the precision of
measurement is all that can be desired. With a.c. lines, the pre-
cision attainable is ordinarily lower, the disturbances due to
changes in impressed frequency very noticeable, and the comnputa-
tions retarded through the substitution of complex for real
numbers, even though the formulas employed remain unchanged.

Wheatstone-bridge Test of Lines.—A useful test on c.c. lines.
for 8 and ro, is conveniently made by means of the Wheatstone
bridge (sce Fig. 59). This is the measurement of the line resist-
ance at cach successive junction, both with the B end freed, and
with the B end grounded.

By (169) the resistance at junction N, with B grounded, is

Ryx = rotanh (N9) ohms £ (269)
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With the B end freed, and with 8 = j5, the line resistance at
junction N is

R;y = 7, tanh (N 0+ j; ) = ro coth (N6) ohms £ (270)
and generally

Ry = ro tanh (N6 + 6') = ro tanh 6y ohms Z (271)
Multiplying equations (269) and (270) together, we find

Ron - Ryn = 1o? ohms? £ (272)

or :
ro = V/Ryy Ryn ohms £ (273)

3 2 11

F1a. 59.—Connection diagram for line-resistance test with Wheatstone
bridge.

In words, the product of the tmpedance free and impedance grounded
is constant at any and all section junctions, either of a T or 11 line.
The square root of this product is the surge impedance of the line.
In other words, the surge impedance of a line at any testing point
is always the geometric mean of B, and RB;. On a smooth line,
any point may be a testing point; but on an artificial line only
junctions (or mid-sections, using (231) and (239)).

Moreover, dividing (269) by (270) we have
/ Il’u,v

VR numeric £ (274)

tanh (N9) =

or
Ryx
Ry
The angle subtended by the line beyond any junction is the anti-

tangent of the root of the ratio of the resistance grounded to the
resistance freed.

N6 = tanh—! \/ hyps. £ (275)
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In other words, the angle subtended by a line beyond a testing
point has as its tangent the geometric mean of R,, the resistance
grounded, and G, the conductance freed.

When these line-resistance tests are made on a T line, it is
necessary only to break the line at the junction selected, and to
connect the bridge to the end beyond the break. In the case of
aII line, however, it is necessary, in addition, to change the first
leak from g to g/2 mhos. This may be done by substituting a
transferable half-leak for the usual full leak, at the testing terminal.

As an example, consider the T line represented in Figs. 36 and
37. If we cut in at section 3, R,3 = 1,125.7 ohms, and R,s =

1,832.2 ohms. Hencero = 4/1,125.7 X 1832.2 = 1,436.1 ohms,
%;%g; — tanh=! 0.78383 = 1.0552 hyps.
Since here N = 3, § = 0.35173 hyp. per section.

It is instructive to make measurements of R, and R, at each
successive junction along the line, and so to derive the values
of 6 and r,.

Distribution of Work of Tests among Observers.—The various
tests above described can be made, if necessary, by a single
observer, making all his own connections, measurements and
records. The work is done more conveniently and expeditiously
by a pair of observers, one making the measurements and the
other the connections and records, the two occasionally changing
duties. Three observers can also advantageously divide the
work between them, and a fourth can also be occupied in com-
puting checks as the tests advance.

Disturbances of Potential and Current in the Artificial Line
That May Be Produced by the Application of a Leak Load, in
Making Potentiometer Measurements.—It has been already
pointed out that it is desirable, in making potentiometer measure-
ments of voltage along the line, to keep the impressed potential
at the generator end within the direct compass ¢f the potentio-
meter; so as to avoid having to apply a “‘reducing box”’ or ‘‘ multi-
plier”’ to the line, at the testing point. Such a reducing box (see
Fig. 60) virtually applies a leak load to the line at the testing
point. A small leak of this kind has a surprisingly large effect in
lowering the line potential at and near the leak. Fig. 60 repre-
sents a four-section T line, loaded at B with a resistance o, and
having the potential at mid-section II measured by potentio-

and N@§ = tanh!
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meter. The potential being beyond the direct compass of the
instrument, a reducing box X, of say 10,000 ohms, or 0.1
millimho, is applied to the line at this point, and one-tenth, say,
of the voltage across the box X to ground, is measured at the
potentiometer.

Since it may sometimes be necessary to employ relatively high
impressed voltages on the line, and a reducing-box leak of the
kind described, we may consider the magnitude of the effect
produced, and how to correct for it, if* needful.

Fi1G. 60.—Potential test of continuous-current line by potentiometer with
aid of a reducing box X.

Fig. 61 shows the effect of applying a leak load of 0.1 millimho
(10,000 ohms), to junction 3 of the five-section line already con-
sidered in Fig. 38, voltaged at A with 100 volts, and loaded at B
with 750 ohms. It will be seen that the effect of the leak, such
as might be used for potentiometer measurement of potential at
3, is to lower the potential from 48.052 to 45.648 volts, a reduc-
tion of 2.404, or approximately 5 per cent. At neighboring test-
ing points, the potential is likewise lowered, although not to the
same extent. Another effect of the leak is to introduce a dis-
continuity in the position angle at 3, from 1.6346 to 1.1503 hyps.,
the rationale of which will be considered under the subject of
composite lines. (Chapter X, page 272.)

The disturbances of potential and current here produced come
under the following proposition. The changes of potential and

¢ “Disturbances of Potential and Current Produced in an Active Network

by the Application of a Leak Load,” by A. E. KENNELLY, Electrical World,
Dec. 28, 1912,
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F1a. 61.—Artificial line loaded with a leak of 0.1 millimho at junction 3.
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inserted outwardly in the leak load at 3.
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current produced at a point P in a nelwork of conductors, supplied
with constant e.m.fs., by the application of a leak at some point Q,
are equal to the values produced at P by the action of the initial e.m.f.
at Q inserted in the leak at Q, all the other e.m.fs. in the system being
put to zero.*

Thus, Fig. 62 shows the same artificial line with the impressed
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F16. 63.—Distributions of potential and current over loaded and unloaded
artificial line. Solid curves for the unloaded state, broken curves for the
loaded state.

e.m.b removed at A, and with the leak applied at 3, this leak
containing in it an e.m.f. of 48.052 volts, the potential existing

* It was supposed in 1912 that this proposition might then be new; but
it was pointed out by Dr. G. A. CAMPBELL, in correspondence, that the
proposition is virtually covered by another given in PROF. ANDREW GRAY's
‘ Absolute Measurements of Electricity and Magnetism,” London, 1888,
vol. i, pp. 152-161 (‘' Theory of Networks of Conductors”).
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there before applying the leak, as in Fig. 38, page 68. The cffect
of this e.m.f., taken negatively, is to produce a potential at 3 of
—2.4034 volts, and correspondingly, in diminishing extent, at
more remote testing points. These are precisely the values of
the disturbances produced by the leak. The currents in the line
Fig. 62, on each side of the leak, are 4+2.759 milliamp. on the
upside, and 1.806 milliamp. on the downside, which correspond
to the disturbances shown in Fig. 61, by reference to Fig. 38.

Fig. 63 indicates the extent of the disturbances in potential and
current at the various testing points along the line, by the appli-
cation of this 10,000-ohm leak.

Correction for Potential Disturbances Due to Leak.—Let V
be the potential at the testing point before applying the leak, and
v the potential at the same point after applying the leak. Then
the “depression factor’ of the leak is*

i="_.G
V G+g
where G is the conductance in mhos to ground of the line from the
testing point, excluding the leak, and g'is the conductance of the
leak itself. The factor k which should be applied to the observed
potential, to correct for the action of the leak, may be called the
correcting factor of the leak at the point of application and is:

L 1_V_ G4y
“d v G

The conductance G will be the sum of the line conductances to
ground, from the testing point, in both directions. If 6, is the
angle subtended by the A end of the line, at the testing point,
when grounded at A, and 6, the corresponding angle subtended
by the B end of the line, then by (124)

G = yo (coth 6, + coth 6,) mhos £ (278)
In the case considered, 6, = 0.70348 and 6, = 1.63462; also yo =
0.69633 millimho; whence k = 1.05265. The observed potential
at 3, in the presence of the leak, should be multiplied by this
factor, in order to arrive at the value of the potential with the
leak removed.

Correction for Current Disturbances Due to Leak.—Knowing
either the uncorrected potential v, or the corrected potential V,

numeric Z (276)

numeric £ (277)

* “On the Measurement of the Insulation of Continuous-current Three-
wire Systems While at Work,” by E. J. HoustoN and A. E. KENNELLY,
The Electrical World, vol. xxviii, July 25, 1896, p. 95 (7).
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at the testing point, the extent of the disturbance in current over
the adjoining sections can readily be found. If G, and G, are the
conductances to ground on each side, whose sum is G, then

i = vg% and 7, = vg%’ amp. Z (279)
or
=Vy GG+ and 7; = Vg~ G?: amp. Z (280)

are the changes in current due to the application of the leak load.
In an artificial line subtending angles 6, and 6, on each side.

iy =pg- . cothoL and i, = vg- . othfe
1= %" coth 8; + coth 6 2 = Y coth 6, + coth 6,
amp. £ (281)
or
. Yo coth 6, Yo C coth 6.
u=Vg--5--- and i, =
g+yo(coth 6,+coth 6,) g+yo(coth 6,+coth 6.)
amp. £ (282)

The sum of #; and ¢, in (281) is obviously

t + 22 = vg amp. Z (283)
In the case considered, v = 45.648, V = 48.052, ¢ = 0.1 X 1073,
G, =1.148 X 1073, G, = 0.7514 X 1073,G = 1.8994 X 1073, ¢,=
2.759 X 10~2 amp., and 7, = 1.806 X 10~2 amp.

In general, a new correction factor has to be found for each
successive testing point. Hence the desirability of dispensing
with a reduction box when using the potentiometer.

Although an artificial line of the character shown in Fig. 54
has the advantage of serving either as a T line or as a IT line at
will, yet so much care has to be taken to ensure good contacts
at all the plugs, that it is doubtful whether fixed independent T
lines and IT lines, with fewer switch contacts, are not preferable.



CHAPTER IX

COMPLEX QUANTITIES AND ALTERNATING-
CURRENT QUANTITIES

It is assumed that the student is already acquainted with the
elementary principles of the simple a.c. circuit; so that it will
be desirable to review only those features of a.c. operation which
bear immediately upon the behavior of a.c. artificial lines.

Complex Quantities and Plane Vectors.—‘‘Real quantities”
are such as may be represented geometrically by the position of
X+ + ? + + s +

-2 -1 0 +1 +2 +3

F1a. 61.—Geometrical representation of real numbers by the position of the
point P on the straight line — X0X.

X

a movable point P, Fig. 64, with respect to a fixed point or origin
0, on an indefinitely extending straight line — XOX. Real
quantities include positive and negative quantities, integral as
well as fractional.

“Complex quantities’” are such as may be represented

1’
Py
u—_——_——-‘__;’i
e Py~ h
2 - !
e 6, [
: \«/0 1 2
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18
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Vi -1
P!
-Y

F1a. 65.—Complex numbers represented by the plane vectors OP, and OP;.

geometrically by the position of a movable point P, in a plane,
with respect to a fixed point or origin O in that plane (Fig. 65).

The position of P, with respect to O, can be defined in either
of twd ways, namely:

1. In rectangular coirdinates, sometimes called Cartesian
coordinates.

2. In polar coérdinates.

8 113
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In rectangular-coérdinate definition, there are two fixed
mutually perpendicular axes, —XO0X and —YOY, in the plane
of reference. The former is called the real azis, or axis of reals;
since it corresponds to the axis of real quantities in Fig. 64. The
latter (—YOY), is called the tmaginary azis, or azis of imagina-
ries. The qualifying adjective ‘‘imaginary,” has historical
significance only, and does not mean that there is anything
indeterminate or fictitious about this axis. The ‘‘orthogonal”
or perpendicular projections of OP, on the X and Y axes, are
respectively the real component z, and the imaginary component
y. The straight line OP connecting the origin O with the mov-

e .
AN
AN
\
\
1.026

F16. 66.—Sum and difference of two plane vectors OP, and OP,.

able point P is not a ‘“‘vector,” in the complete sense of that term
as used in mathematics; because, although two complex quan-
tities OF, = 3420° and OP, = 2/40° Fig. 66, have as their
sum OP; + OP; = 0Q, and as their difference OP; — OP; = 0Qs,
formed according to the same rules as govern true vectors, yet
the product OP, X OP; of these two complex quantities is 0Q,
Fig. 67, and is equal to the opposite-order product OP; X OP;;
whereas two vectors, when multiplied, enjoy a scalar product,
as well as a vector product, and the latter depends upon the order
of multiplication.

In order to distinguish the straight lines in a plane, which
geometrically represent complex quantities, from true vectors,
we may call the former plane vectors. In what follows, the term
“vector’’ will mean a ‘“‘plane vector.”

Rectangular Plane Vectors.—The magnitudes and signs of
the rectangular components r and y completely determine the
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position of the vector OP. If z and y are both positive,
OP lies in the first quadrant. If z and y are both negative,
OP lies in the third quadrant. If z is — and y is +, OP
lies in the second quadrant. If z is + and y is —, OP lies in
the fourth quadrant.

To express the vector OP in polar coordinates, we take the same
origin O, and axis of reference OX, as the fixed “initial line.”
From this line, we measure the circular arc XOP, either in ra-
dians, degrees, quadrants, or other specified units of circular angle
B (Fig. 65). The length of the vector OP is called the ““modulus”’
of the polar cosérdinate complex quantity; while the circular angle
B is called the ‘‘argument” of the same. Since the mathe-
matical terms ‘“modulus’ and “argument’’ are not well adapted
for practical purposes, we shall follow the terminology suggested
by Fleming* and use the term ‘“size’’ for the modulus, and the
term ‘““slope” for the argument of a polar complex quantity.
Any plane vector i3 thus completely specified either by ils real and
imaginary components, x and y, or by its size p and slope .t The
slope may exceed the range +360° or +2r radians; but, in most
cases, it is simpler and more convenient to keep within these lim-
its. The positive or counter-clockwise direction of rotation in
angle is understood, unless the negative sign is prefixed.

A rectangular-coordinate vector or ‘‘rectangular vector’
may be written:

OP =z + jy vector (284)

where j = 4/ =1, and indicates that y is measured along the
imaginary axis. Proper signs must be given to both z and y.

Polar Plane Vectors.—A polar-coordinate vector, or “polar
vector,” may be written:

OP = pe® vector (285)

where e is the base of Napierian logarithms (2.71828 . . .),
and B is in circular radians. The factor ¢£’? on being expanded,
becomes:

* See ““The Wireless Telegraphist's Pockethbook,” by Pror. J. A. FLEM-
ING, London, 1915.

t The size of a plane vector quantity zis denoted by | z , and its slope may
be denoted by z. Thusif z = 1.5£30° say, then 2 = 1.5and z = 30°.
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+iB . B*_B* Bt B B¢ .
€ =1i]ﬂ—f2i+13!+4rli15!——6!+ . . . numeric £ (286,
g B¢ B° . g B
= A=gtg—grt - - IEi(E-gts— - - )
numeric Z (287)
= cos B+j sin B numeric Z (288)

This is a ““versor,” or operator which turns or rotates in one plane
the size or modulus p from the original direction OX, through
+ B radians, as, for example, into the direction OP, (Fig. 65).

For ordinary purposes of definition and operation, however, it
is sufficient to write (285) in the simpler polar form.

OP = p/B vector (289)

which shows that OP has a size of p units, and is displaced in
phase through a slope of 8 circ. radians in the positive direction.
If B is expressed in degrees, we may write it

OP = p/B° vector (290)

If we desire to express a negative phase or angle of rotation, we
may write the polar vector

OP = p\B° or pZ—p° vector (291)

The size p may be regarded as essentially positive; but a negative
sign applied to it is equivalent to a change of r radians, or 180°, in
the slope. That is

—p4B° = +p£(8+180°) vector (292)

Interchangeability of Rectangular and Polar Plane Vectors.—
It is evident from the elementary trigonometry of Fig. 65, that

plB° = V7 + 3 / tan=! (g) numeric £ (293)

so that a vector whose rectangular coérdinates x and y are given,
can be converted into a polar vector, whose size is the square root
of the sum of the square of the components, and the tangent of whose
slope s their ratio y/x.*

* A simple Vector Calculating Rule has been designed by Pror. J. A.
FLeMiNGg and manufactured by Messrs. W. F. Stanley & Co., London, for
changing the ccérdinates of a plane vector from rectangular to polar, or
reciprocally. See “The Predetermination of the Current and Voltage at
the Receiving End of a Telephone or Other Alternating-current Line,”
by J. A. FLEMING, Journ. Inst. Elect. Engr., vol. 52, No. 236, pp. 717-723
May, 1914.
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We may also write (293) in a form more convenient for com-
putation (see page 151):

2
ey
=z sec B°4B° numeric Z (294)
that is, we may find tan—! (Z) =p8°, and then p will be z sec 8°; or
o_ : "1*2 _lx_= °/ —lx .
ottt =it (5)" Jouy mweomest oo
= y cosec B°/LB° numeric Z (295)

Form (294) is useful for transforming rectangular to polar coér-
dinates, when y is smaller than z, or p makes an angle of less than
45° with the — X0X axis; while (295) is préferable when p makes
a large angle with that axis.
Reciprocally,
z+jy =pcosB + jesin B numeric £ (296)

so that the real and imaginary components of a vector are
respectively the cosine and sine components of the size.

Addition and Subtraction of Plane Vectors.—To add plane
vectors, express them in rectangular coérdinates. The summation
vector will then have, as ils real component, the algebraic sum of the
reals, and, as its imaginary component, the algebraic sum of the
tmaginaries.

Thus, the sum of (5 + j2)and (— 3 — j1) is2 + j1. In Fig.66,
the summation 3£20° + 2/40° = (2.8194 j1.026) + (1.532 +
71.285) = 4.351 + j2.311 = 0Q,.

Subtraction of a vector is merely its addition according to the
preceding rule, after the signs of both of its components have been
reversed.

Thus, to subtract (2 + j7) from (5 — 33) add (-2 — j7) to
(5 —j3) = 3 — j10. In Fig. 66, 3£20° — 2/40° = (2.819 +
71.026) — (1.532 + j1.285) = 1.287 — j0.259 = 0Q,.

Multiplication of Plane Vectors.—To multiply plane vectors,
express them in polar coérdinates, or as “polars.” The product
will then have, for its size, the product of the sizes, and for its slope,
the algebraic sum of the slopes; or

]féﬂz X Alﬂ] = {1131 X If[ﬁg = AB/B\ + B! numeric V4 (297)
Thus, 5£30° X 2/20° = 104£50°
In Fig. 67, OP, X OP; = 3£20° X 2£40° = 6£60° = 0Q.
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Division of Plane Vectors.—To divide one plane vector by a
second, express both as polars, such as AZB, and BZB,. The
quotient will then have, for its size, the quotient of the sizes, and for
its slope the algebraic difference of the slopes, or

AZB, + B/B; = g[ B1—B: numeric £ (298

Thus
7460° <+ 2X10° = 3.5£70°.

Q

/
/

F1a. 67.—Product of two complex quantities represented as plane vectors

Vector multiplication and division may also be effected be-
tween rectangulars, although the formulas are not so simple.
Thus

(x1 + Jy ) (x2 + Jy2) = (@122 — y1y2) + j(z1y2 + yaz1)
numeric £ (299)
The real component of the product contains a difference, and the
imaginary component a sum of products in z and y. Again
zitjyn _ (@tiy) (Ra—jy) _ (nretyye) Hi(2ay — 21y2)
z2tjy:  (x24jy2) (x2—jya) r3+y;
numeric £ (300)
These expressions (299) and (300) are so awkward, by comparison
with (297) and (298), that it usually saves time to convert
rectangulars to polars in order to effect either multiplication,
division, involution or evolution,
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Reciprocals of Vectors.—If a plane vector is expressed in polar
coordinates, its reciprocal has for its size the reciprocal of the
vector’s size, and for its slope, the negative of the vector’s slope;
or

1 1 1 .
A8 = A 8= VAN numeric Z (301)
Thus
1 c
5760° — 0.2X60°.

The corresponding result in Cartesian vectors is:
1 1 yz=jy_2z-3

zs+jy z+gy T z—gy +y
Involution and Evolution of Plane Vectors.—The nth power of

a polar plane vector has for its size the nth power of the size, and for
its slope n times the slope of the polar; or

(A4LB)» = Ar4nB numeric Z (303)

numeric Z (302)

Thus

(5£20°)% = 53£60° = 125£60°.
1

Similarly, the nth root of a polar AZB, has for its size A",
the nth root of the size, and for its slope /8/n, the nth part of
the slope.

Thus
(64£45°)% = 8/22°.5.

Fractions of a degree may be expressed in minutes and seconds,
but often more conveniently in decimals of a degree, when decimal
tables of circular functions are available. The sexigesimal sys-
tem of angles wastes, in the aggregate, a large amount of the
time of engineers.

Complex Hyperbolic Angles.—We have already seen that a
‘“real” hyperbolic angle is associated with a hyperbolic sector,
in a manner analogous to the association of a ‘‘real’’ circular
angle with a circular sector. We shall next see that an ‘‘imagi-
nary hyperbolic angle” is associated with a circular sector.
Similarly, an “imaginary circular angle’’ is associated with a
hyperbolic sector. Consequently, there is a close cross-con-
nection between complex hyperbolic and complex circular angles,
because each is associated with both a hyperbolic and a circular
sector.
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Cosine of a Complex Hyperbolic Angle. Geometrical Con-
struction.—In the plane XOY, Fig. 68, with center at the origin
0, and with unit radius OA, describe the rectangular hyperbola
HABH'. Suppose that the complex hyperbolic angle, whose
cosine is desired, is 1 + j2 hyps. Thenlet AOB be 1 hyp. radian,
whose cosine is Ob. With center O, and radius Ob, describe a
circle in a ‘““circular” plane, passing through —XOX, but mak-
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Fra. 68.—Cosine of the hyperbolic angle 1 + j2.
Cosh (1 4 j2) = — 0.642148 + 71.06861 = 1.2467£121°.0'.09"

ing an angle with the plane XOY such that its cosine is numer-
ically equal to the tangent At of the hyperbolic angle AOB*.
Deseribe an angle bOd of 2 circular radians, in the plane bedef.
From d, the end of the circular radius-vector, drop a perpendicu-
lar on the plane XOY , intersecting this planeat P.  Join OP which

* Incidentally, this angle has been called the “ Gudermannian comple-
ment ™ of the hyperbolic angle.  See paper by Dr. (i. F. BECkER, Phil.
Muag., October, 1912, **The Gudermannian Complement and Imaginary
Geometry."”
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will then be the required hyperbolic cosine of 1 + j2, namely,
— 0.64215 + j1.06861 = 1.2467 £121°.0°.09””. Its rectangular
components are OM and MP.

It is evident that the cosine of 1 4 jO would be Ob, that of
1 + j1.0, 0Q, and that of 1 + j1.5, Og, all in the XOY plane.
Moreover, the locus of cosh (1 + jy) falls on the ellipse bQgPeh,
whose semi-major axis Ob = cosh 1, and whose semi-niinor axis

==

Y
F1a. 69.—Sine of the hyperbolic angle 1 + 72.
Sinh (1 4 j2) = — 0.48906 + 71.4031 = 1.4859/109'.12’.58".

Og = sinh 1 = bB. As y increases from O to 2r, OP runs posi-
tively or counter-clockwise once around this ellipse. As y in-
creases from 2r to 4x, OP runs around this ellipse a second time,
and so on to infinity.

Sine of a Complex Hyperbolic Angle. Geometrical Construc-
tion.—In the plane X0Y, Fig. 69, with origin O, and unit radius
OA, describe the rectangular hyperbola HABII’, whose asymp-
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tote is OT'S. If the angle whose sine is required is 1 + j2, draw
the radius-vector OB, cnclosing a hyperbolic angle AOB of 1
radian. Its sine will be OX = bB. Describe 2 circ. radians in
the plane XOY, from OX to Od, enclosing the circular angle
XOd. Let another plane, which we may call the reference plane,
pass through — XO0X, and make with the plane XOY an angle
whose circular sine* is the hyperbolic tangent At. Project the
point d perpendicularly out of the plane XOY, until it meets the
reference plane in the point P. Then OP in the reference plane
will be the required complex sine, having componentsin that plane
OM and MP; i.e., — 0.48906 + j1.4031 = 1.4859/109°.12’.58".
"It is evident that the sine of 1 + j1.0 hyps. would be 0Q, and of
1 + j1.5 hyps. OR, both in the reference plane. Moreover, the
locus of sinh (1 4 jy) will be the ellipse XQRPXb, whose semi-
major axis is Ob = cosh 1, and whose semi-minor axis OX =
bB = ginh 1. Thus, the tmaginary component of a hyperbolic angle,
whose 8ine or cosine is required, may be regarded as producing rola-
tation over a corresponding circular sector; while the real component
produces rotation over a corresponding hyperbolic sector.
Cosine of a Complex Hyperbolic Angle. Trigonometrical Ex-
pressions.—Referring to (496), Appendix A, the cosine of a com-
plex angle,

cosh (z + jy) = cosh z cosh jy + sinh z sinh jy (304)
= cosh z cos y + jsinh z sin y (305)
= cosh z cos y + j cosh z sin y tanh z (306)
=Ll ty+e Xty (307)

=4/cosh?z— sin?y Z + tan—'(tanh ztany) (308)
=4/sinh?z+4cos?y £ + tan~!(tanhz tany) (309)
=+/cosh 2z-coszZ + tan~!(tanh z tan y) (310)

_ cos 2y

where cos 2z = cosh 2z (311)
Each and all of the above formulas (304) to (311) has ad-

vantages in particular cases for purposes of computation, while

(306) is the formula embodied in the construction of Fig. 68.
Sine of a Complex Hyperbolic Angle. Trigonometrical Ex-

pressions.—Referring to (495), Appendix A, the sine of a com-

plex angle,

* Incidentally, this angle is called the Gudermannian of the hyperbolic
angle.
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sinh (z + jy) = sinh z - cosh jy + cosh z - sinh jy (312)
= ginh z- cos y + jcosh z- siny (313)
= sinh z-cos y + jsinh z-sin y - coth z (314)
=YL +y— e <+y) (315)
= \/ sinh? z + sin? Y l.i tan—! (coth z - tan y)
(316)
= 4/cosh?z — cos? y £ + tan~! (coth z - tan y)
317)

= 4/cosh 2r - 8inz Z + tan—! (coth z- tan y)(318)*

where 2z has the meaning given in (311).

The construction of Fig. 69 is derived from (314); but (312)
to (318) are all useful.

Tangent of a Complex Hyperbolic Angle. Trigonometrical
Expression.—A geometrical construction for tanh (z + jy) in-
volving orthogonally intercepting circles, has long been known,}
and has been given in detail elsewhere.} For practical pur-
poses, however, we may obtain an expression for the tangent, by
dividing the cosine into the sine, using any corresponding pairs
of formulas between (297) and (311). An additional useful
formula is

. sinh 2z . sin 2y
tanh (@ £ 3) = (ooh2z + cos2y T cosh 2z + cos 2y M)

The sines, cosines, and tangents of complex hyperbolic angles
have been extensively tabulated and charted** for practical use.
These will be frequently referred to in what follows. For accu-
rate arithmetical work, the tables are the more important. For
slide-rule computations, where swiftness is desired, with a cor-
respondingly lesser degree of precision, the charts are preferable.

Quadrant Measure for Circular Angles.—It has been pointed
out, in connection with Figs. 68 and 69, that the vector value of
either sinh (z + jy) or cosh (z + jy) is cyclically repetitive, at suc-
cessive intervals of 2x circ. radians in y. This makes an awkward

* Formulas (310), (311), and (318), are due to Prof. C. L. Bouton.

t CrysTAL’s ‘“‘ Algebra,” Edinburgh, 1889.

$ ““Application of Hyperbolic Functions to Electrical Engineering Prob-
lems,” Chapter V.

** “Tables of Complex Hyperbolic and Circular Functions,” by A. E.
KEeNNELLY, Harvard University Press, 1913.

“Chart Atlus of Complex Hyperbolic and Circular Functions,” by
A. E. KenneLLY, Harvard University Press, 1913.
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interval for tabulation. A much more convenient expedient is
to express the imaginary component in quadrants, since 4 quad-
rants are equivalent to 2x, or 6.283 . . . radians. In Fig.
68 and 69, the lower half of the y circles are indicated in quad-
rant measure. Thus cosh (1 + j2.5) = — 1.09 — j0.83, and sinh
(1 4 j2.5) = — 0.83 — j1.09. This division with decimal sub-
divisions corresponds precisely to the French system of dividing
the circle in grades, or decimals of a quadrant. In order to
reduce a complex angle (z + jy) to quadrant measure, the
imaginary y must be ‘quadranted;”’ i.e., divided by =/2, or
1.57079 . . . Thatis

ztjg=z%j 1*57—6%9—-— =1r+j0.63662y hyps. Z (320)

Thus, 1 + j2 in radian measure, is 1 + j1.2732 in quadrant
measure. It is advisable to underscore quadranted imaginaries,
in order clearly to distinguish them from radians circular measure.

Another advantage pertaining to the use of French quadrant
measure, in dealing with the imaginary components of hyper-
bolic angles, is that when z exceeds 4.0, it is easily shown from
(307) and (315), that for most practical purposes,*

sinh (z + jy) & cosh (z + jy) & ; Zy numeric £ (321)

where the result is expressed as a polar, with its argument in
circular measure, which, for practical purposes, has to be reduced
to degrees or ‘“grades,” according to the tables available. But

sinh (z + j¢) & cosh (z + jq) & ; Zq numeric £ (322)
That is, the sine or cosine of a hyperbolic angle with a large real
component z has a size of half the exponeniial of z, and a slope
equal to the imaginary q, expressed in quadrants, or in grades after
shifting the decimal point.

The tables and charts are largely based on quadrant measure in
the imaginary components of the entering hyperbolic angles,
and we shall often use quadrant measure in what follows.

Simple Alternating-current Circuits.—A simple a.c. circuit is
one which has resistance and reactance (inductive, condensive, or
both) and which carries a single frequency; .e., the e.m.f. and cur-
rent are sinusoidal without harmonices. In Fig. 70, such a circuit

* The symbol & stands for “approximately equals.”
PP 3
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is indicated as having an impressed root-mean-square (r.m.s.)
e.m.f. of E volts, by voltmeter, impressed upon a non-ferric
inductive impedance Z ohms Z, connected between the mains
mm, the current supplied to this reactor being I amp. £ r.m.s.
by ammeter, and the active power P, watts, by wattmeter.
The impressed frequency f in* cycles per second, has an angular
velocity, .
w = 2xf  circ. radians/sec. (323)

In the case represented in Fig. 70, let f = 63.66, for which v =
400 radians per sec. Let the impedance of the coil, as apparent

F16. 70.—Simple alternating-current circuit with the impedance z measured
both in size and in slope by volt-ampere-wattmeter readings.

from volt-ampere-wattmeter measurements, be 10 ohms, with a
power factor of 80 per cent.; 7.e., 8 ohms ‘““active resistance"”
and 6 ohms ‘“‘inductive reactance.”” The active resistance of a
coil is that which it appears to offer from such a.c. measurements.
The active resistance of a coil ordinarily exceeds the d.c. resist-
ance, and increases with the frequency. It may include elements
due to skin effect (imperfect current distribution over the cross-
section of the conductor), eddy-current loss in the conductor,
and hysteretic losses in neighboring iron or steel. The inductive
reactance of a coil is the positive reactive resistance which it
appears to possess by reason of its c.e.mn.f. of self-inductance, as
modified by skin effect and eddy currents. It is assumed that

jX = jLw johms (324)

* Signalling frequencies in submarine and land telegraphy range from
1 to 50 or more ~ (w = 6 to 314). Power and lighting frequencies (low fre-
quencies) ordinarily range from 12~ to 60~ (w=75to w=377). Telephone
and telegraph frequencies (andio frequencies or moderate frequencies) ordi-
narily range from 60~ to 10,000~ (v = 377 to w = 62,800). A standard
reference telephonic frequency is » = 5,000. Radio frequencies (high
frequencies) ordinarily range from 10,000~ to 1,000,000~, or more. Alter-
nating-current enginecering, taken broadly, thus includes the range from
f=1tof = 108
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expresses the relation between the reactance ;X of the coil at
impressed angular velocity w, and the apparent inductance L
henrys. In the case considered, L = 0.015 henry.

Since the current and the impressed e.m.f. will ordinarily
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Frc. 71.—Vector diagrams for simple inductive alternating-current circuit.

differ in phase, it is optional to select either of those quantities
as having reference phase. That is, we may consider the current
I as of standard phase and the impressed e.m.f. E as leading in this
case with respect thereto; or, we may consider the e.m.f. as of
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standard phase, and the current I as lagging with respect to the
same. Each assumption gives rise to a series of four simple sta-
tionary vector diagrams, as indicated in Fig. 71. The left-hand
column of the ZEPW triangles employs the current as of standard
phase; while the right-hand column of YIPW triangles, employs
the e.m.f. as of standard phase.

Vector Impedance.—Commencing with the left-hand column,
the impedance triangle abc has for its base, the active resistance
R, in this case 8 ohms, and for its hypothenuse, the inductive
reactance +;X,* in this case j6 ohms. If the circuit contained
condensive reactance, instead of inductive reactance, this hy-
pothenuse would be in the negative' direction, or would be —jX
ohms. We might also describe the impedance in this case as
104£36°.52’.11”” ohms.

Vector Electromotive Force.—If next we multiply this imped-
ance by I = I'£0° = 10£0° amp., we obtain the E triangle def,
with IR = 80 active volts, jIX = j60 reactive volts,and E = IZ
= I(R + jX) total or vector volts. This is a stationary vector
triangle, in which the horizontal or active component is the r.m.s.
voltage component consumed actively in overcoming resistance.
The vertical or reactive component is the r.m.s. voltage com-
ponent consumed reactively, in overcoming reactive resistance or
reactance; .e., in neutralizing the c.e.n.f. of self-induction.
The total or vector voltage may be described as 100£36°.52’.11”
volts, to current standard phase.

Vector Power to Current Phase.—If we multiply the E voltage
triangle by I;Z0°=10£0°amp., we obtain the power triangle ghs.
Here gh is the active power P, = IR watts, both the average
and the maximum cyclic rate of transferring energy out of the
circuit, in the form cither of heat, chemical, or mechanical energy.
The imaginary component hi is the reactive power, or the maxi-

*j for v/ —1 was first introduced into electrotechnics by BepELL and
CREHORE, ‘Alternating Currents,” 1893. The application of complex
arithmetic and plane vectors to impedance, and the a.c. circuit, was first
introduced by the author, ‘‘Impedance,” Trans. A. I. E. E., vol. x, p.
175, April, 1893. The extension of complex quantities and plane vectors
to potentials and currents is due to STEINMETZ, ‘‘Complex Quantities and
Their Use in Electrical Engineering,” Proc. Int. El. Congress, Chicago,
August, 1893.

t International notation, according to the decision of the International
Electrical Commission, at its Turin meeting in 1911, calls for B 4+ jX as

the impedance of an inductance coil, here followed. See Standardization
Rules of the A. 1. E. E.
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mum cyclic rate of transferring energy from the mains mm, Fig.
70, into the magnetic flux of the coil, and back again. When the
r.m.s. current I in the coil reaches a maximum or crest value I,
amp., either plus or minus, the coil contains magnetic energy
LIS = LI*joules. At the current zero points, this energy dis-
appears from the coil, returning to the mains and generator sys-
tem. The maximum cyclic rate of transfer of this energy is equal
to this reactive power jP, watts. This reactive power is some-
times called ‘wattless power,” but this term is both erroneous
and misleading. The reactive power jI2X is just as ‘‘ wattful”
as the active power I?R. The only difference is that j72X is the
activity of transferring energy from one part of the circuit to
another, while I?R is the activity of transferring energy from the
circuit to its surroundings. It is true that in ordinary industrial
practice, reactive power has no effect on customers’ watt-hour
meters, and therefore is not saleable, but it is illogical to deny
the existence of power, merely because it is ordinarily unsaleable.

Similarly, the hypothenuse g7 is the total or vector power I*Z
watts. It is commonly described as volt-amperes, to distinguish
it from active power. This distinction is a useful one, provided
it is realized that a ‘‘ vector volt-ampere’’ is also a “ vector watt."”
In this case, the vector power is 1 kw. or 1,000 volt-amp. with an
active component of 800 watts, and a reactive component of 7600
watts.

Vector Cyclic Energy.—If we divide the P triangle by 2w, or
twice the impressed angular velocity, we obtain the stationary
vector diagram jkl. Here jk is the active maximum cyeclic
energy, which is added in successive 4+ and — blocks, in each
energy cycle, to the stream of outgoing active energy leaving the
circuit. W, is the cyclic active energy throb, as will be seen
later. The reactive component jW . is the maximum cyclic
energy, added in successive + and — blocks to the energy of the
magnetic flux linked with the coil. This reactive energy block
W. = 0.75 joule. When at its negative maximum, it destroys
the energy in the coil (0.75 — 0.75 = 0 joule). When at its
positive maximumn, it produces the full cyclic magnetic energy in
the coil (0.75 + 0.75 = 1.5 joules). The r.m.s. current I
being 10 amp., its maximum cyclic value is 14/ 2 = 14.14 amp.,
and the maximum cyclic magnetic energy is

Wa = WLIn = LI* = 2W, joules  (325)



COMPLEX QUANTITIES 129

in this case 14 X 0.015 X (14.14)? = 1.5 joules, as already
found. The frequency of this energy cycle is 2f, or twice the
frequency of the impressed current; because LI./2 reaches its
maximum at each current wave crest, whether I is plus or minus.
Its angular velocity is therefore 2w radians per second.
Vector’'Admittance.—Turning now to the second column in Fig.
71, the vector admittance of the branch circuit in Fig. 70 is
the reciprocal of the vector impedance Z. In this case ¥ =

1
10£36°.52.11"

admittance is represented at mon. The real component G, or
mo, is called the ‘“ active conductance.”” The imaginary component
on is —jB, the inductive susceptance. If the branch circuit under
test in Fig. 70 were condensive, instead of being inductive; 7.e., if
a condenser were either substituted for the reactor, or a condenser
of preponderating reactance were inserted in series with the coil,
then the susceptance jB would be plus, instead of minus, and
would become a condensive susceptance. The Y triangle, and its
subordinates, may thus be either inverted or erect. Its condition
in this respect must always be opposite to that of the Z triangle.

Vector Current.—If taking the impressed r.m.s. e.m.f. E as of
standard phase, or as inherently possessing zero slope, we mul-
tiply Y by E = |E' £0°, we obtain the I triangle pgr. Here pris
the active current I, = EG amp. The negative perpendicular
rq i8 the reactive current —jI. = —jEB amp. The active com-
ponent I, will be in phase with the impressed e.m.f. E. The
reactive component will be in quadrature with E.

Vector Power to Electromotive Force Phase.—If we multiply
the r.m.s. current I, or 10536°.52’.11”’, by the impressed e.m {. at
standard phase E = 100£0° volts, we obtain the vector power
diagram stu,or 1,000 X36°.52".11"" watts. Here E2G, or 800 watts,
is the active power, —jE?B, or —j600 watts, the reactive power,
and E?Y = E*G — jB), the vector power. It will be observed
that the power diagram stu is the same as the power diagram
I?Z, or ghi reversed, the active 800 watts being the same in both;
but the reactive components ut and hi being mutually opposite.
At first sight, this looks like a contradiction; but, on further exami-
nation, the two oppositely directed triangles are consistent.
Figs. 72 and 73 show that the crest value of the power always

occurs between the maxima of voltage and of current. Conse-
9

= 0.1X36°.52’.11” = 0.08 — j0.06 mho. This
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quently, reactive power which is leading with respect to current
phase, is lagging with respect to voltage.

Similar considerations apply to the two W triangles kjl and
vwz, which are likewise mutually inverted.

Instantaneous Diagram to Current Standard Phase.—Fig. 72
represents diagrammatically one complete cycle of current and
voltage in the branch circuit of Fig. 70, under consideration. In
order to simplify the diagram, all of the waves, which are actually
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Fi1c. 72.—Diagram of maximum cyclic current, voltage, power and energy,
to current standard phase.

sinusoids, are indicated by simple zigzag or saw-tooth waves.
The maxima, minima, and zero points, are correctly presented of
such a diagram; but the intersections of the lines do not carry the
same significance.*
The current I starts positively at 0°, or with standard phase,
* Corresponding diagrams with full sinusoidal curves are given in the

original paper “Vector Power in Alternating-current Circuits,” by A. E.
KENNELLY, Trans. A. 1. E. E., June 27, 1910.



COMPLEX QUANTITIES 131

and reaches its crest value 14.14 amp. at 90°. The impressed
e.m.f. E, reaches its crest value 141.4 volts, nearly 37° earlier in
the cycle. It is analyzed into two components; namely, the
active component E,, 113.1 volts, in phase with I, and a leading
reactive component E;, 84.84 volts, in quadrature with 1.

The successive instantaneous products of current and voltage
give rise to a P sinusoid of double frequency, executing two com-
plete cycles in one cycle of either current or voltage. This power
sinusoid has its crests at +1,800 watts, just midway in time
between the crests of I and E. It is therefore a leading power
with respect to the current I. The power sinusoid has its axis
on the line pp at +800 watts, and its lower maxima at —200
watts. It may therefore be expressed as
EI {cos B + sin (2wt + B)} = P, + P sin (2wt + B) watts (326)
or,in this case, 800 4 1,000 sin (2wt + B) watts, where w = radians
per sec. It may be analyzed into an active power component
P, = 800 — 800 cos (2wt) watts corresponding to gh, Fig. 71, and
a leading reactive power component P, in quadrature therewith,
600 sin (2wt), corresponding to Az, Fig. 71.

The power P may be considered as the time rate of change of a
certain cyclic energy W. This energy, being the integral of (326),
will have a double-frequency sinusoid W,1.25 joules in amplitude,
and 37° in energy phase, ahead of its active component W, of
1.0 joule amplitude. The leading reactive component W. of
0.75 joule amplitude has its axis ww displaced to 0.75 joule above
00. The three powers P., P and P,, are severally 90° ahead of the
three energies W., W and W,. The amplitude 0.75 joule of the
reactive energy, in phase with I, causes the crest energy of the
current LI;/2 to be just 1.5 joules, as has already been pointed
out. At the current zeros, the total value of W, is zero. These
energy components correspond to the three vectors of the W
triangle jkl, Fig. 71..

Instantaneous Diagram to Voltage Standard Phase.—In Fig.
73, the corresponding series of amplitudes and phase relations is
presented to voltage standard phase. E represents the voltage
wave of amplitude 141.4, commencing positively at 0°. The cur-
rent I lags 37° with respect thereto. The power sinusoid P has
its crest midway between these, and lags 37° of power phase with
respect to K, thus corresponding to st, in Fig. 71. This power
may be analyzed into an active component P, of 800 watts
amplitude, and a lagging reactive component P’; of 600 watts, cor-
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responding to ut. Fig. 71. To these three cyclic double-frequency
powers correspond three cyclic double-frequency energies W,, W
and W, of 1.0, 1.25 and 0.75 joules amplitude. The latter is
the negative of an energy wave W', of like amplitude, which
would represent the energy in a condenser of +;0.06 mho con-
ductance, charged to a potential of 141.4 volts. The sinusoid
W . reaches its total crest value of 1.5 joules in phase with /..
These energy relations correspond to those of the triangle rwr,
Fig. 71.
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Fia. 73. —Diagram of maximum evelie voltage, eurrent, power and cnergy,
to voltage standard phase.

Rotative Properties of the E and I Vector Diagrams.—The
Z and Y triangles, Fig. 71, are essentially stationary, no benefit
being derivable from their rotation. The E and I diagrams,
however, def and pgr, although presented as stationary, may be
made xerviceable as rotary vector diagrams. Thus, let the def
triangle be increased 2 times in linear dimensions; or let the
same triangle have its seale of linear interpretation increased in
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this ratio, and be rotated about O, Fig. 74, in the plane of the
figure, at the angular velocity w radians per sec., or 63.66 revo-
lutions per sec. Then the instantaneous projections of the points
ef and G, on the axis of reals — X0X, will indicate the correspond-
ing instantaneous values of the active, total and reactive electro-
motive forces. .

Similarly, if the I diagram be expanded 4/2 times in linear
dimensions, and be rotated about the point O, Fig. 75, in the plane
of the paper, at the angular velocity, w = 400 radians per sec.,
the instantaneous projections of ¢, 7, and s on the axis of reals
—XO0X, starting from the proper epoch, will mark the corre-
sponding instantaneous values of the total, active and reactive
currents.

Fra. 74.—Rotation of the E diagram Fia. 75.—Rotation of the I diagram

‘after linear expansion in ratio v/2, for’ ‘after lincar expansion in ratio V2, for’
instantaneous projections. instantancous projections.

The stationary E and I diagrams are, therefore, also to be re-
garded as rotative, if suitably altered in scale of linear dimensions.
It also follows that the E and I vectors may be mounted together,
at the proper phase displacement, and rotated conjointly as a
single diagram, at the common angular velocity w. Such a
rotative diagram, of either voltage or current, has long been
used illustratively in a.c. analysis.*

Rotative Properties of the P Vector Diagrams.—If either of the
power diagrams in Fig. 71, say ghi, be rotated about the point O,
Fig. 76, without any change in scale, at the angular velocity 2w or,
in this case, 127.3 revolutions per sec., and instantaneous projec-
tions of h, 7 and k be taken, on the axis — X0X, then these pro-

*J A. FLEMING, “ The Alternating-current Transformer,” vol. i, p. 110,
London, 1889.
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jections will mark the instantaneous values of the active, total
and reactive powers. The zero of the reactive power is at O,
which also corresponds to the line pp in Figs. 72 and 73; but the
point H’ corresponds to the power zero OO in those figures.

. >

F1a. 76.—Rotative power diagram without change of scale.
Referring to the power triangle ght, and sut of Fig. 71, it will be
evident that the instantaneous power in an a.c. circuit, or branch,
osctllates between the sum and difference of the base and hypothenuse
of the vector power triangle, (— 200 and + 1800 watts in Fig. 76).

-v
Fi1a. 77.—Corresponding rotations of the E I and P vectors.

By mounting the I and E vectors on one disk, spinning at
radians per sec., and the P vectors on another disk, geared with
the first in the velocity ratio of 2 to 1, so that the P disk spins at
2w radians per sec. (Fig. 77), the instantaneous vertical projec-
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tions of E, I, P,, P and P, on the vertical axis —YOY, will
mark off the corresponding instantaneous current, voltage, active,
reactive, and total power. The P vector should stand vertical, as
shown, when the E and I vectors make equal and opposite angles
with the vertical. Powers are read with respect to H as zero,
except P,, which is read with respect to O as zero.
Rotative Properties of the W Vector Diagrams.—By reference
-to (326), it will be seen that the time integral of the power contains

X

T o Ik
F1a. 78.—Rotation, with rolling, of the W diagram.

a uniformly increasing term P,t, as well as a cyclically oscillating
P .
term 9, 80 (2wt + B). The latter term can be developed by the

projection, on a fixed axis, of the energy triangle jkl, or vwz,
spinning in the plane of projection, about the points j or v, with
the angular velocity 2w radians per sec. The first term requires
a constantly increasing addition to the value of W so developed.
The sum of the two terms can, therefore, always be obtained by
both rotating and rolling the diagram, developed as a wheel of
tread radius W, and flange radius W, as indicated in Fig. 78.
Here the wheel kIM rvolls on the rail +X0—X, at uniform
angular velocity 2w. The vertical projection of the flange point
l, at L on the rail, marks the instantaneous value of the energy
delivered to the circuit, for which the energy triangle jkl, Fig.
71, has been prepared.

It will be observed that, as the wheel rotates and rolls, the path
of the flange point in the plane of rotation will be a prolate
trochoid,* abcdefg, containing a closed loop at each revolution.
The instantaneous projection at L of the flange point | in this curve

* Greenhill's ‘‘Differential and Integral Calculus,” 1896, p. 39.
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marks off the total energy poured into the circuit from the electric
source, up to that instant.
Just as any point on the flange of a railroad-car wheel, running
d

Q
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e —

F16. 79.—Prolate trochoid described by the moving point on the flange
of the wheel representing a rotating and rolling energy diagram.

at say 100 km. per hr., over a railroad track, not only comes to
rest, but actually retrogresses, or reverses its direction of hori-
zontal translatory motion, once in each wheel revolution; so,

4

d L b

Fra. 80.—Case of reactanceless circuit corresponding to a flangeless wheel.
the moving point tracing a cycloid in the plane of rotation.

when the flange point is executing the loops be, ef, in Fig. 79, the
energy ceases to flow from the source into the circuit, and flows back
from the circuit toward the source.

[l e tatataey £

X

e
Fi1c. 81.—Rotation, without rolling, of W diagram, in limiting case of resis-
tanceless circuit.

In the particular case of Fig. 80, when the circuit.is non-reactive,
and contains only pure resistance, the flange of the wheel dis-
appears, or the wheel becomes a simple cylinder, and the path of
the rotating point [ becomes a pure cycloid, abede. In this case,
the flow of energy momentarily stops at b and d, but the energy
tide does not reverse.
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In the opposite case, when the circuit is resistanceless or wholly
reactive, the energy vector diagram jkl has zero base, and its
hypotenuse coincides with its perpendicular. The triangle
shrinks to a mere vertical line, and the tread radius shrinks to the
axis 0, Fig. 81, leaving the wheel all flange. This ‘“wheel,” in

T I T I [ 1 rTlT]U

Ly L L L1

L L L 1]

t1+ Roller
I |

1

L L L1

OR

Fra. 82.—Front elevation of model (giving simultancous instantaneous
values of E I P and W. The wheel at O is pushed towards the left along
the table HH.

rotating, fails to advance by rolling, and the energy oscillates
between the limits a and b.

In Fig. 77, if the power disk is allowed to roll upon the tread
circle a, b, ¢ over a rail HX, and with it the geared current-
voltage disk, the moving system will project on a vertical rod,
carried along with it, the instantaneous values of current, volt-
age, and power; while the vertical projection of the flange
point P will trace out, to a suitable linear scale, the energy along
the rail. The horizontal speed of the axle O will measure the
average power, and also the active watts of the circuit.

Such a model has been constructed for a particular range of
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current and voltage values.* A front elevation of the model is
shown in Fig. 82. Fig. 83 shows pictures of the model in three
successive stages of operation for the case of a single-phase cir-
cuit having E,, = 100 volts, I,, = 200 amp. 60° in phase behind
Em, Z = 0.5£60° ohm.

Experimental Development of the Z Vector Diagram.—The
vector diagram of e.m.f. def, Fig. 71, can be produced experimen-
tally, fora.c. branch circuits having convenient values of impedance
and frequency, by developing a rotating current sheet in a metal-

r 7
® -
|
-~ B B |
' i
P S w |
— !
|
M = :z ]
—
- 3
B /
/
4
M , B
a
z
1
0 R+tjix

Fia. 84.—Connections of uncompensated vector-diagram apparatus for
measuring the impedance Z.

lic plate. The impedance of a simple branch circuit, containing
combinations of resistance, inductance, and capacitance in series,
can then be measured on the plate in rectangular coérdinates,
distances along the X axis corresponding to' resistance, and dis-
tances along the Y axis corresponding to reactance.t The con-

*“A Model for Alternating-current Quantities,” by A. E. KENNELLY
and H. G. CraNE, Electrical World, July 11, 1914.

t ““A New and Direct Process of Producing Alternating-current Vector
Diagrams Experimentally,” by A. E. KexnerLy, H. G. CRANE and J. W.
Davis, Electrical World, March 30, 1911.

*“The Rotating Electric-current Field,”” by A. E. KENNELLY, Atls del

Congresso Internazionale delle A pplicaziont Elettriche, Turin, September, 1911,
vol. ii, p. 1180, section I11.

“Producing Vector Diagrams Experimentally. Improved Apparatus,”
by A. E. KExNELLY and H. G. CraNg, The Electrical World, April 17, 1915.
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nection diagram of the apparatus is given in Fig. 84, and a pic-
ture of the compensated plate in Fig. 85.

Although the device above referred to marks off only the Z
vector diagram of Fig. 71, through the medium of the correspond-
ing E diagram on the plate, yet the corresponding P and W
diagrams may be directly inferred therefrom.

F1ac. 85.—Compensated vector-diagram apparatus.

After the student has developed such a vector diagram by
experimental exploration over a plate, the series of vectors in
Fig. 71, containing the essential properties of an a.c. circuit,
become vividly impressed on the mind.

Fictitious Impedance Diagrams.—In cases where the branch
circuit of Fig. 70 contains cither an active c.e.m.f. such as that
of a synchronous motor, or a combination of condensive and
inductive reactances in series, the readings of e.n.f., current
and power, will give rise to an impedance Z diagram and its series
of subsidiaries, which is arithmetically correct and practically
useful, but is physically incorrect as regards impedance elements.
Such diagrams, although serviceable, may be described as
“fictitious.”



CHAPTER X

FUNDAMENTAL PROPERTIES OF ALTERNATING-CUR-
RENT REAL LINES

We have already seen that all uniform real c.c. lines, in a steady
state of operation, possess or subtend a real hyperbolic angle 6,
and have likewise a linear real hyperbolic angle a = /L =
+/rg hyps. per km. A c.c. artificial line also possesses a real
hyperbolic angle # per section of its length, and, if each section
represents a length of L km., a corresponding linear hyperbolic
angle 0/L is inferred.

A.c. lines differ from c.c. lines in the effects of inductance and
of capacitance.: That is, while c.c. lines call only for a considera-
tion of linear resistance r and linear leakance g, a.c. lines call,
in addition, for a consideration of linear inductance !, and linear
capacitance c. Moreover, the effects of inductance and capaci-
tance vary with the frequency.

Linear Inductance of Real Lines.—The inductance of a very
long loop consisting of a pair of parallel uniform round wires, each
of radius p cm. and set at an interaxial distance D cm., may be
defined as the total magnetic flux linked with the loop per unit of
current steadily passing around it. The linear tnductance of
such a loop is the total flux, per linear centimeter of the loop, and
per unit of current. In c.g.s. magnetic measure, this linear induc-
tance may be expressed in abhenrys per loop centimeter, accord-
ing to the formula:*

abhenrys

loop em. (327)

D

lo = u + 4logh (p)

where u is the magnetic permeability of the wire, assumed

uniform, which for non-magnetic materials may be taken as

unity, and logh signifies hyperbolic or Napierian logarithms,

to the base ¢ = 2.71828 . . . . The first term signifies the

internal linear loop inductance, and the second term the czternal
linear loop inductance.

Reducing (327) to common logarithms, and to henrys per loop

* CLERK MaxwkeLL's “Electricity and Magnetism,” vol. ii, p. 293, 1881.
141



142 ARTIFICIAL ELECTRIC LINES

kilometer, we have for non-magnetic wires, in air or other non-
magnetic medium,

henrys
loop km.
The linear inductance of either of the two wires to the mid-plane

between them, may be called the linear wire tnductance. It is
half of the linear loop inductance (327) or

3.

l.= .1+ 9.2103 log (l: ). 10~

henrys

wire km.

1= {05+ 4.6052 log (f) . 10~
It is known* that this non-ferric linear inductance as above
defined, by the ratio of the linear flux to the steady current sup-
porting it, is the same for all equal values of D 'p. In other
words, the degree of proximity of the two parallel wires does not
have to be considered.
In the case of three parallel and equally spaced wirest forming
a three-phase a.c. line system, the linear wire inductance is
advantageously used from (329). In such a case, D is the inter-
axial distance between any pair of the three wires.
As an example, the linear wire inductance of a pair of No. 10
A.W.G. copper wires of diameter 0.2589 cm. interaxially separated
by 30.48 cm. (1 ft.) is

(0.5 + 1.6052 log 03102—‘;25) 10~ = (0.5 + 1.6052 X 2.3719)10~

= (0.5 + 10.923) 10— = 11.423 X 10— = 1.1423 millihenrys
per wire km. (1.839 mh. per wire mile.)

Tables of linear wire inductances for different sizes of wire at
various spacings have been worked out by {1 various writers.

Linear Capacitance of Real Lines.—It follows from the theorem
of the propagation of electric disturbances over a pair of uniform
parallel conductors in free space at the speed of light, that for

* A. Rosserr, “A Treatise on the Theory of Alternating Currents,”
Cambridge University Press, 1904, vol. i. Chapter, I1. pp. 57-60.

t If the wires are unequally spaced. the linear inductances differ, and
the linear resistances also virtually differ. The corrections for dissym-
metrical spacing, being somewhat remote from the main subject, will not be
considered.

tt “The Inductance and Capacity of Suspended Wires,” by E. J. Hovstox
and A. E. KExNELLY, Elcctrical World, July 7, 1894, vol. xxiv, pp. 6-7, also
various handbooks, such as “The Standard” or “The American’ hand-
book.
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any such pair of conductors, of any cross-sectional shape,*
their linear loop capacitance expressed in statfarads per loop centi-
meter i3 the reciprocal of their external linear loop inductance
expressed in abhenrys per loop centimeter. Consequently, the
linear loop capacitance of a pair of round wires in air is

1 statfarads
loop cm.

(330)

C = —

D
4 logh (p)
Reducing to common logarithms, kilometer lengths, and

remembering that 1 statfarad = 1;} upf. (micromicrofarads) this

becomes:
= 0010685 oy farads g,
log ( ) oop km.
P

If, however, the wires are not separated by a distance of many
radii, t.e., if D/p is less than 10, say, these formulas (330) and
(331) are unreliable and a formula may be substituted, which is
correct for all distances, in air, d being the diameter of the wire
in cm.

1 statfarads
€ = Zcos'h—f(”) loop om. (332
d
reduced to farads per loop kilometer this is,
¢, = 0.027778 5 10-8 farads (333)
_ (D loop km.
cosh l(}i)

Thus the linear loop capacitance of a pair of wires at an interaxial
distance of 50 diameters, or 100 radii, is by (331) 0.0120635/2 =
0.006032 uf./loop km., and by the strict formula (333), 0.027778/
4.6051 = 0.006032, to four significant digits the same result.
At an interaxial distance, however, of 2 diameters or 4 radii, the
linear loop capacitance by (331) is 0.0120635,0.60206 = 0.02004

* Trans. A. 1. E. E,, June 29, 1909, p. 702, vol. xxviii. part I.
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uf./loop km.; while by the strict formula (333) it is 0.027778/
1.3170 = 0.02109.*

The linear wire capacitance is just double the linear loop capaci-
tance, and in the c.g.s. system, is the capacitance per linear cm.
of either wire in a uniform insulated loop to the zero-potential
mid-plane between them. Hence,

10.05556 farads

J.¥0900 -6 Aradas 5
_ (D X 10 wire km. (335)
cosh 1(,_)
or, for ordinary interaxial distances,
very nearly
_ 001 o, farads
- p X 10 wire km. (336)

log (p)
The curves of Fig. 854 show the linear wire capacitance of
straight round parallel wires in air (uncorrected for insulators,

towers or neighboring wires) up to interaxial distances of 25
diameters, in accordance with (335). Fig. 85B shows the cor-

* Seeing that (332) is the correct formula for the linear loop capacitance
of a pair of parallel cylinders in air at any distance, the proposition cited
connecting linear inductance and capacitance would indicate that (327)

should be:

;thenryg (334)
oop cm.

lb = u + 4 cosh™!? (g)

This question has been investigated experimentally. See DRr. F. B. SiLsBEE
on ‘“‘Inductance of Conductors at Close Spacings,” Electrical -World, July
15, 1916, vol. 1xviii, pp. 125-126. The results indicate that at very high
frequencies, formula (334) appears to be correct; but that at low frequencies
(327) is correct. The reason seems to be that at low frequencies, the re-
sistivity of the conductor tends to equalize the current density over the
cross-section; whereas at high frequencies, the current density is non-
uniform and superficial, such as would give effect to (334).

The following references bear upon the linear capacitance formula.

“The Linear Resistance between Parallel Conducting Cylinders in a
Medium of Uniform Conductivity,” by A. E. KENNELLY, Proc. Am. Phil
Soc., vol. xlviii, April, 1909, pp. 142-165.

“The Electrostatic Capacity between Equal Parallel Wires,”” by H.
PexnpER and H. S. OsBORNE, Electrical World, vol. lvi, No. 12, pp. 667—670.

“Graphic Representations of the Linear Electrostatic Capacity between
Parallel Equal Wires,” by A. E. KENNELLY, Electrical World, October 27,
1910.

A. RusseLL, ““ Alternating Currents,”” Cambridge University Press, 1904,
vol. i, Chapter 2, p. 59.
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responding linear wires capacitance up to interaxial distances of
10,000 diameters, in accordance with either (335) or (336).

Thus, in a three-phase aerial line, with the wires separated
interaxially by 100 dmmeters, each wire would have a linear
capacitance of 0. O555/cosh‘l 100 = 0. 0555/5 298 = 0.01049 mi-
crofarad per wire km.; 7 e., between each wire and the neutral
or zero-potential surface.

~hwenolavorituahcboo~NUANOUBEON LA RO NLLS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 13 17 18 19 20 21 22 23 24 2§

F1c. 854.—Linear capacitance per 100,000 wire-feet and wire-meters.
Graphs of cosh-!z, 1/cosh-!z and linear capacltances of bare, equal, parallel,
round wires in air for interaxial distances up to 25 diameters.

In the case of three parallel and equally spaced wires forming
a three-phase a.c. line system, the linear wire capacitance is
advantageously found from (336). In such a case, D is the inter-
axial distance between any pair of the three wires.

The linear wire reactance z = lw of the conductor in ohms per
wire kilometer, is the product of [ the linear wire inductance, and
the impressed angular velocity w. The linear wire reactance
manifestly increases directly with the frequency f. It is just half
the linear loop reactance 1, w ohms per loop km.

The linear wire susceptance b = cw of the diclectric, in mhos
10
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per wire kilometer, is the product of ¢ the linear wire capacitance,
and the impressed angular velocity w. It also manifestly in-
creases directly with the frequency of operation, and is just double
the linear loop susceptance b,, mhos per loop km.

The linear wire impedance of a real a.c. line is

. . ohms
Here r, the real component of the plane vector z, is the linear wire
resistance, and, at low frequencies, is the same as though the wire
were operated by continuous currents, at the same temperature.
At high frequencies, ‘“skin effect,” or non-uniform a.c. density,
tends to increase r.

Skin-effect Formulas for Round Wires.—In the ordinary case
of round wires of radius X cm. and electric conductivity «
abmhos per cm. (the reciprocal of the resistivity p in absohm-
centimeters), operated at w radians per sec., a fundamental for-
mula for the internal linear impedance 2z’ of the wire due to ‘““skin
effect,” t.e., to auto-disturbance of a.c. density over the cross-

section, when not too close to neighboring active conductors, is*
, c X Jo(aoX) ohms

2 =T Ty T(wX) wirekm. ¢ (338

where
ao=" —jdrypw = V4xypw\45° = v/ 2ryuw— jV/ 2rypw = az —jas
em~! £ (339)

r is the ordinary linear resistance of the wire to continuous cur-
rents, in ohms per wire kilometer.

u is the permeability of the substance of the wire assumed as
uniform and as unity for non-magnetic substances.
Jo(aoX) is a plane-vector Bessel function of aoX, of zero ordert
(numeric £).

J1(aoX) 18 a plane-vector Bessel function of aoX, of first order
(numeric Z).

The real component of z’ is the apparent linear a.c. resistance
of the wire, including skin effect, in ohms per wire kilometer.

* “Funktionentafeln mit Formeln und Kurven,” by JAENKE and EMpE,
Teubner’s, Berlin, 1909, pp. 142-144.

t These vector Bessel functions have been tabulated and charted over a
convenient range. See ‘‘ Experimental Researches on Skin Effect in Con-

ductors,” by KENNELLY, LaAws and PIERCE, Proc. A. 1. E. E,, September,
1915.
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The imaginary component of 2’ is the apparent linear internal
reactance of the wire in j ohms per wire kilometer. The external
reactance, due to magnetic flux encircling the whole wire, in the
air or other external insulating material, is the same as though
no skin effect existed, and does not appear in the formula.

At very low frequencies when « approaches zero, the expres-

sion —— @X  Jo(aX) approaches 1.0£0°. At very high frequencies,

when a, becomes a large inverted semi-imaginary quantity, the
acX Jo (aoX)

limit of —, - becomes:

2 Ji(aX)
]a;X a;X

X Z45° = a’X 41222 £45° numeric £ (340)

v 2 \/ 2
or the internal linear lmpedance of the wire at very high fre-
quencies is large and semi-imaginary, especially when the radius
X of the wire is large.

As an example, a No. 8 A.W.G. copper wire has a radius X
= 0.1632 cm., a resistivity at 20°C. of 1,724 absohm-cm. (y =
0.5801 X 1073), and a linear resistance at 20°C. of 2.061 ohms
per wire km., required its internal linear impedance at 820~ =
5,152 radians per sec.

Here aoX = 1/12.566 X 0.5801 X 10—* X 5.152 X 10°\45° X
0.1632 = 1.0X45° = 0.707 — j0.707. Hence by Bessel Tables
1.0X45° 1.01552£14°.217

= 2061 X "="5 =~ X §.5014<37°.837
= 2.061 (1.01266£7°.054) = 2.061 (1.0050 + j0.12436) = 2.0713
. ohms

The virtual linear resistance has thus increased 0.5 per cent. by
skin effect. The linear inductance is 0.2563/5,152 = 0.4976 X
10—* henry per wire km. = 0.4976 abhenry per wire cm., which
is 0.48 per cent. below the normal value of 0.5 (see (329)).

When the value of a:X does not exceed unity, as in the above
example, the change in internal reactance is so small that it may
ordinarily be ignored, and an approximate formula for change of
linear resistance, due in its original form to Lord Rayleigh,*
may be uscd ordinarily only as far as two terms:

(a2X) (a2 X)® ohms
{1+ 2880 t - b ik G4
* Lorp R,n LEIGH, I’hzl. Mag., May and December, 1886.

P N
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Thus in the case above considered with «,X = 0.707, this
becomes

¥ = 2.061 (1+°25 - .. )
= 2.061(1 +0.0052 — . . . ) ohms per wire km.

When a:X exceeds 2, the last formula (341) becomes unsuitable,
and Russell’s formula* may be employed, ordinarily only as far as
two terms:

r=r

(“’X +5 +5

whem ) o

Vector Linear Wire Impedance.—In all a.c. problems, the
vector linear wire impedance z replaces the real linear wire resist-
ance r of corresponding d.c. problems. Nevertheless, r may be
retained in a.c. problems, if it is borne in mind that it has been
changed from a real to a complex quantity. The linear wire
impedance z of an a.c. loop circuit, is manifestly just half the .
linear loop impedance z,, of the same.

The linear wire admittance of a real a.c. line is

. . mhos
y=g+ijew=g+35b i, 4 (343)
Here g, the real component of the plane vector y, is the linear wire
conductance, and is ordinarily greater than the corresponding
leakage conductance of the same line when operated by continu-
ous currents. It is, therefore, necessary to measure g in a.c.
cases. The linear wire admittance y of a loop circuit, formed of
two uniform parallel wires, is just double the linear loop admit-
tance y,, of the same circuit, in mhos per loop kilometer.

In all a.c. problems, the vector linear wire admittance y
replaces the real linear wire conductance g of corresponding d.c.
problems. Nevertheless, ¢ may be retained in a.c. problems, if
it is remembered that g has been changed from a real to a complex
quantity.

The linear hyperbolic angle of a real a.c. line is the vector,

a =Vay =V +jn) @+ = a+ia P £ (349)

wire km.
The real and imaginary components and of this vector are:

* A. RusseLL, Phil. Mag., vol. xvii, p. 524, 1909,
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Vi { Vi + ) (g + b)) + (gr — ba))

ay =
T T hyps.
=Vilie +@r -t G- (34
a= N1 { V¥ 29 (g +0b) — (gr—b2))
S T P e ir. radi
=Villa =@ -] i 6
where 'a?| means the size of the plane vector o? defined by:
la?| = V(' + 2 (g2 + b?) = |z|-|y! numeric (347)

It is, however, ordinarily more convenient and expeditious to
express z and y as polars, and then to find « as a polar; thus:

a= 228y o0 = T P o v iy

_hyps.
wire km. < (349

We may take, as an example to be worked out in each way, the
case of a loop of ‘“standard” telephone twisted-pair circuit,
consisting of two No. 19 A.W.G. copper wires 0.0912 cm. in diame-
ter, paper-insulated and lead-sheathed. The loop-mile constants
of this circuit are taken as r,, = 88 ohms /l.m.,[,, = 10~ h/l.m.,
g, = 5 X 10~¢ mho/l.m., ¢,, = 0.054 X 10~¢ f/l.m. The corre-
sponding wire kilometer values are r = 27.34,1 = 0.3107 X 1073,
g = 6214 X 10-% ¢ = 0.6711 X 10-7. At the standard tele-
phonic angular velocity = 5,000, (f = 796~), z = 1.5535 ohms
per wire km., and b = 335.5 X 10~ mho per wire km. Then by
(345):

ar= "N }{V/(27.34 + 1.554?) (6.214* + 335.5%10—"* +

= V3 {/(747.476 + 2.413) (38.61 + 112,560.25)10 +
(169.891 —521.288)10~)

= V1{~/(749.889) (112,598.9 X 10-'?) — 351.397 X 10~}

=V 3{1/0.749889 X 1.125989 X 10~ — 3.51397 X 10~}
= V1 { 1/0.844365 X 10~ — 0.0351397 X 10~2}
=1/§ {0.918893 X 10~% — 0.035140 X 10}

=/} {0.883753 X 10-%} = +/ 0.441876 X 10
= 0.66474 X 10! = 0.066474
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a:=+/} {(0.918893 X 10~% + 0.035140 X 10~}
=+/ } {0.954033 X 107%]
=4/ 0.477017 X 102 = 0.69066 X 10-' = 0.069066
so that a = 0.066474 4 j0.069066 hyps. per wire km.
= 0.066474 + ;0.043969 hyps. per wire km.
Using the polar method by (344) and (348), with (294) and (295)
a=+/ (27.34 + j1.5535) (6.214 + j335.5)10~°

_ 15535
=\ {27.34 sec B;4tan --27:3‘1-}
- 6214, .,
—1 —6
{335.5 cosec B2£4cot 335 5 10

= 385.6x10"¢

oY

m-sax 10
F1a. 86.—Polar development of linear hyperbolic angle.

{(335.5 X 10~* cosec 88°.56".20"")Z 88°.56".20"'}
=1/27.384£3°.15".08" X 335.56 X 10-6£88°.56".20"
=4/9,188.91 X 10-4292°.11’.28" = 95.859 X 10-3/46°.5".44"
=0.095859.,46°.5" 44"
=0.066474 + ;0.069066 hyps. per wire km.
=0.066474 + j0.043969 hyps. per wire km.
The steps of the computation in the latter case are indicated
geometrically in Fig. 86.

Alternating-current Attenuation Constant.—We have already
seen in Chapter III, that the linear hyperbolic angle « of a c.c.



152 ARTIFICIAL ELECTRIC LINES

line measures the attenuation of either potential or current along
a line of great length. In the a.c. case, the linear hyperbolic
angle has a real component a, and an imaginary component a,.
On an a.c. line of very great length; or of short length, but
grounded at the motor end through an impedance equal to the
surge impedance 2o, the steady-state potential being taken as V'
volts Z at any point on the line, the potential V, at a point 1 km.
further along will be, by (21):

Vi=Ver=Ve(atian =Vea . jar = YVenuXa, volts Z (349

That is, the real part of a determines the attenuation in size, and
the imaginary part the attenuation in slope, or phase, tn uni
length of the line. By (21) and (22) the same proposition applies
to the normal attenuation of both potential and current.

The phase attenuation a, may here be considered as the decay
of phase in V, expressed in circular radians per kilometer.

If we consider an a.c. generator applied to the home end of a
line, the waves of potential and current flow down the line, each
retaining its original phase; i.e., a crest persisting as a crest, and a
zero as a zero. But the generator is steadily impressing a new
and advancing phase on the line; so that, with respect to the
generator, the phases of the waves, as they advance, steadily fall
behind that at the generator end. The greater the velocity of
wave propagation, the less will be the loss of phase, or phase at-
tenuation a, in any single kilometer of line; while, on the con-
trary, the less rapidly the waves advance, the greater will be the
phase attenuation.

Wave Length.—The distance in which the phase attenuation
amounts to 360°, or 2r girc. radians, will be one wave length,

km. For this reason a, is sometimes called the ‘wave-length
constant.” Consequently,
b
Nty = 2r radians (350)
2r 4
=T = - km. (351
A w7 3 m. (351)

where a1 is the wave length constant in quadrant measure.
Apparent Velocity of Propagation.—Moreover, the number of
waves per sec. emitted by the generator, or passing any point on
the line, must be equal to the impressed frequency f in cycles per
second; so that the distance through which any wave will advance
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in 1 sec. must be fA km., or the apparent velocity of propagation v
will be
— =27 _e_ 4  km
‘:5 = )‘5’ v=fr= as oy as sec. (352)
In the case already considered, the normal attenuation will be
approximately 0.06647 per unit, per km., or 6.647 per cent. per
km.* The phase attenuation is 0.069066 circ. radian per km.,

o ’ ” : _6'_28_32_ —_
or 3°.48'.30"" per km. The wave length \ is 0.069066 — 90.974
5,000

km., and », the apparent velocity of propagation, 0.069066 =
72,395 km. per sec.

The actual velocity of propagation of electric waves over circuit
wires in air is accepted as equal to the velocity of light in air, or
very closely 300,000 km. per sec. In a dielectric of permittivity
x, and permeability u, the actual velocity is theoretically reduced
in the ratio 1/4/ku. The apparent velocity is less than the actual
velocity, owing to the effects of attenuation; whereby the advanc-
ing waves disappear before reaching their final goal, thus di-
minishing their apparent speed. In the case of an overhead aerial
line, with no losses, 7.e., with negligible linear conductor resistance
r and dielectric conductance g, the linear hyperbolic angle would
be -

a = Vijlo.jéw = jo/cl = ja !;(y—n‘:: Z (353)
or a would be all imaginary. The apparent velocity of propaga-
tion would then, by (352), be v = 1/4/cl. If the wires had negli-
gible internal inductance, and the insulators supporting the wires
had negligible capacitance, the value of 1/4/¢l for such an aerial
line would be 300,000 km. per sec. Internal inductance, and
extra external capacitance tend to lower this slightly. Linear
resistance and leakance lower it still more, especially at low fre-
quencies. Solid dielectrics reduce it still further, and loading
the line with coils in series, or leaks in shunt, may yet further
lower it.

Special Cases of Linear Hyperbolic Angle.—We have already
seen that in the particular case of a line with negligibly small r and

* 008847 jg actually 0.93569, or 0.06431 per unit loss, and not 0.06647.
This discrepancy is due to the fact that a, is here so large that the square
and higher powers of a, are not negligible; see (20).
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g, the linear hyperbolic angle a becomes a pure imaginary, with
zero attenuation, or for an ideal lossless line ay, = O.

In the case of negligible leakance g, and negligible inductance
l, we have z = 0 and

a =vVjrew =Vjrb =/rb £45° hk’n‘: 4 (354)

and .
_ . _ radians ..
ay = Qg = _\/2 km. ) (350)

Here « is a ‘‘semi-imaginary quantity,”’ i.e., a complex quan-
tity having equal real and imaginary components, or having an
argument of 45°. This case corresponds very nearly to cabled
lines operated at low frequencies.

In the case when r, x and b are definite, but g is negligibly small,

B « 90° and g° 62" + 45°. This case corresponds very closely

to well-insulated overhead aerial lines.
In the case when r, z and g are definite, but b is negligibly small,

. 20°and B° 82"- This case corresponds very closely to an

a.c. signal circuit comprising the two rails of a railroad track.
In the case where ,l = ;’ B:° = B:° = B° and we have Heavi-

side’s distortionless circuit.*

When the linear inductance is very appreciable, as in ordinary
aerial lines, the real attenuation constant a; may be approxi-
mately expressed as follows, especially at high frequencies,

r

o

s (1) (18- 1 (] ) -

200 Ccr

1O+ 0 NP (3s)

200 Yoo k
When the linear leakance g is negligible, this reduces to
r
2 r hyp. .
=1 R
ay o) /’1 -2 200 km. (35[)
Ne

* 0. Heavisipg, “Reprinted Papers,” 1892, vol. ii, p. 307 (The Electri-
cian, 1887, 1888).
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Linear Hyperbolic Angle as Affected by Unit of Length.—As
already pointed out in relation to (19), the value of the linear
hyperbolic angle is directly proportional to the unit of length
selected. Thus, since 1 naut., or nautical mile, is 1.853 km., the
value of « referred to r, [, g and ¢, in linear nautical measure,
would be 85.3 per cent. greater than in linear kilometer measure.
Thus, in the case considered, '

arm = 0.095859£46°.05'.44"" = 0.66474 + j0.069066 hyp. per km.
This becomes, proportionately,
an = 0.1776£46°.05'.44” = 0.1232 + j0.1280 hyp. per naut.

Linear Hyperbolic Angle as Affected by Single-wire or Two-
wire Lines.—We have already seen that the value of « is the same
whether we form it from loop-kilometer or wire-kilometer linear
constants. With respect to wire-linear values, the loop-linear
values of conductor impedance (r and jz) will be doubled; while
" those of dielectric admittance (g and jb) will be halved. It is,
therefore, entirely optional whether we enter (344) or (345) with
loop or wire-linear constants, provided we keep entirely to one or
the other plan. The values of a and of 8 will in either case be the
same. Telephone engineers ordinarily use loop-linear values.
Telegraph and power-transmission engineers ordinarily use wire-
linear values. For simplicity and uniformity, we shall use wire-
linear values throughout.

Hyperbolic Angle Subtended by an Alternating-current Line.—
Since, by (18), La = 6, it follows that the hyperbolic angle 8
subtended by an a.c. line is:

0 = La = L(a; + jas) = Lay + jLay = 6, + j0, hyps. £ (358)

This angle consists of a real or hyperbolic component 0y, and an
imaginary or circular component 0,. The former measures the
normal allenuation of potential or of current over the line, and the
latter the attenuation of phase.

Another expression for 8 following (18), is

0 = L\zy = VZ.Y = N(R + jX)(G +jB)  hyps. £ (359)

In the case of a ““reactanceless track circuit;” i.e.,a railway-track
signal circuit, with negligible rail reactance by comparison
with the rail resistance, and with negligible track susceptance by
comparison with the track leakance (X = 0, B = 0), 6 is a pure
real, or a real hyperbolic angle. This corresponds also to the
d.c. case.
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In the ideal case of a ““lossless line”’ (R = 0,G = 0), 68 a pure
imaginary, or corresponds to a circular angle. High-frequency,
large, well-insulated aerial lines approximate to this case.

In the case of a ‘““pure cable” (X =0, G = 0), 6 is a semi
imaginary quantity at all frequencies.

As an example, we may consider 50 km. of the paper and air
insulated twin-wire standard telephone cabled conductor, the
linear hyperbolic angle of which we have already seen to be, at
w = 5,000, « = 0.095859£46°.05'.44"" = 0.066474 + ;0.069066
hyp. per km. Here 8 = 50a = 4.79295£46°.05’.44"" = 3.3237
+ 73.4533 hyps. This means that with normal attenuation,
both the potential and the current would attenuate in 50 km. to
€3-3237 3 —i3.4833 = (), 0394<3.4533 radians = 0.0394X197°.51".34".
Normal attenuation is the exponential attenuation which occurs on
either an indefinitely long line, or on a line of moderate length,
rendered equivalent in behavor to part of an infinite line, by being
grounded at the far end through an impedance equal to its surge
impedance 2.

Normal Attenvation Factor.—As already explained in con-
nection with (23) and (24), a line of 6 hyps. developing normal
attenuation, has an attenuation factor, for both potential and
current, of

€ = X4, cir. radians = € ?1X6, - _13_0 degrees
= ¢ %1X6,- 12r quadrants numeric £ (360)

In cases of non-normal attenuation, such as ordinarily present
themselves in practice, the attenuation factor is the ratio of a pair
of hyperbolic functions.

Distance in Which the Normal Attenuation Factor Attains
Specified Values.—If we desire to know the distance L, /, in which
the magnitude or vector size either of potential or current will fall
to 1/nth of its initial value, we have

e = p-t numeric (361)

or 6, = logh n hyp. (362)

Thus to fall to 14, 6, must be logh 2 = 0.69315; so that Lya, =
‘421 =

0.60315, or Ly, = V9915 (uin, to fall to 1/¢, or to 0.3679,

ay
6, = 1 and

Ly = (: km. (363)

1



FUNDAMENTAL PROPERTIES 157

In the case already considered, where a; = 0.066474, the
potential and current will normally fall to one-epsilonth in a
distance of L,,, = 1/0.066474 = 15.04 km., and will fall to one-
half in a distance of L,, = 0.69315/0.066474 = 10.4 km.

Similarly, if we desire to know the distance in which the phase
of either potential or current will normally fall or lag 1 radian with
respect to the phase at the line point considered,

L= L km. (364)

Qg

Thus in the case considered, where a, = 0.069066, the dis-
tance of normally attenuating 1 circ. radian in phase would be
1/0.069066 = 14.48 km. The distance for 1° would be 57.296
times shorter or 14.48/57.296 = 0.2527 km. The distance for
losing 30° would be 7.581 km.

Polar Graph of Normal Attenuation on an Alternating-current
Line.—The polar graph of normal attenuation on any a.c. line
18 an inward equiangular spiral, in which the circular angle between
the tangent and the radius-vector is 8°, the slope of a.

An equiangular spiral may be expressed by the formula*

p=ar = ce tF vector size (365)
where p is the size and v the slope of the radius-vector in circular
radians. Here a and c are constants, and 8° is the circular angle
of the spiral.

When the real attenuation component «, is small by com-
parison with the imaginary component a,, the circular angle
approaches 90° or »/2 radians. In such a case, the tangent of
the “normal attenuation spiral’ is nearly perpendicular to the
radius-vector, and the spiral departs but little from a pure circle,
making many revolutions before collapsing. On the contrary,
when a, is large with respect to a,, as in the case of heavy
attenuation, the tangent is nearly coincident with the radius-
vector, and the spiral approaches a straight line directed toward
the origin.

The normal attenuation spiral for the standard telephone cable,
at w = 5,000, above considered, is shown in Fig. 87, at ABCDEFG.
The initial radius-vector OA = 1, represents the value of either
voltage or current at a given point on the line, say the generator
end. The tangent AT makes with this radius-vector the circular

¢ GREeNHILL'S “Differential and Integral Calculus,” Macmillan &
Company, 1896, p. 55.
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angleOAT = B° = 46°.5’.44", and this property holdsfor any and
all points on the curve. The successive points* B, C, D, E, F,G,
have been chosen as marking off successive, equal circular angles
at O, in this case 30°.

Such equal angles subtend, in all normal attenuation cases, equal
lengths of the line. In this case, 30° corresponds to 7.581 km
Each of these successive radii-vectores OB, OC, OD, etc., is 60.41

4
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Fia. 87.—Normal attenuation spirals of potential and current.

per cent. of the length of its predecessor, or has attenuated in size
39.59 per cent. in the preceding 30°. The polar equation (365)
of this particular spiral is pe= 1.0~ cot 46°.5'447 — ] ()¢ —0.962477

It will be observed that at OG, 45.487 km. from A, the potential
is oppositely directed to, or 180° in phase from, the initial value
OA. In this half-revolution, the remnant is reduced to 0.0486
of the original, and in one complete revolution, or 90.973 km.,
the remnant would be (0.0486)% = 0.002364 of the original,

* C. V. DryspaLg, “The Theory of Alternate-current Transmission in
Cables,”” The Electrician, December, 1907 and January, 1908.
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an insignificantly small amount. In the case, however, of a well-
insulated power-transmission line, 8 might readily attain 88°,
and the normal attenuation of potential or current may be less
than 20 per cent. in one complete revolution. In such a case,
the direction of the current may be reversed many times, over a
long line, without falling to insensible magnitudes. The higher
the frequency, the more numerous and closer these reversals are
likely to be along the line, and the more numerous the spiral con-
volutions in the normal attenuation graph.

Graphical Relation between Potential and Current Spirals.—
If we express the normal attenuation of potential along any actual
line by the formula:

Ve= Viee® volts £ (366)

where z is the distance in kilometers from the point where the
potential is V, volts, it follows that

or the rate of change of potential is —a times the potential itself.
But the normal attenuation graph is an inward equiangular spiral;
so that the rate of change of potential along the line is also an
equiangular spiral, multiplied by the vector «; that is the negative
differential of the potential spiral is the same spiral altered in scale
by the size of a, and changed in phase by the slope 8° of a, in this
case 46°.5’.44””. This differential spiral would start from a line
near OF, drawn parallel to AT, and its radii-vectores would lag
133°.54’.16"" behind those of the potential A, B, C, D, E.

We know from the fundamental theory discussed in Chapter
IV, in relation to (38), that:

av, _ _ _ . volts
e —aVem— o= — 10 +jl) 12 (308)
or
I=— ld;x amp. Z  (369)

This means that if we operate upon the differential spiral by
—1/z, we shall obtain the graph of the current. Consequently,
the graph of a normally attenuating current is also an equiangular
gpiral, to an altered scrle, and advanced B° — 8,° = Q—g beyond the
potential spiral. In this case A’B’C’I), Fig. 87, is the current
spiral to a scale of milliamperes, advanced 46°.5'.44" — 3°.15’.08"
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= 42°.50'.36" beyond ABCD. The initial current at 04’ is
numerically equal to yo, and the current spiral may be regarded
as the potential spiral after being operated upon by the plane
vector yo.

Again, following (43), if we differentiate the potential spiral
twice, we obtain the same spiral operated upon by the plane
vector a?; 1.e., altered in scale by 'a? and advanced in phase by
at = 26°.

In the case of a distortionless circuit, in which z, and y, are
real quantities, or 8° = 0, the normal attenuation spirals of V'
and I have the same direction in the plane of reference, so that
one and the same spiral will serve for both with a suitable change
in dimensional scale.

Similarity of Sectors in a Normal Attenuation Spiral.—If a
normal attcnuation spiral of potential or current is subdivided
into sectors subtending equal circular angles at the origin, like
AOB, BOC, COD, etc., Fig. 87, it is evident from the laws of
the equiangular spiral, that these sectors are similar; that is
OA : OB :: OB : 0C, and if we draw chords AB, BC, CD, etc., we
shall also have OA :0OB:: AB: BC. These successive chords,
being equally dephased by the sectorial angle, may be also
represented in a similar equiangular spiral.

Alternating-current Surge Impedance.—In ‘accordance with
(26), which must be now interpreted vectorially, the surge impe-
dance 2, for a.c. lines is

\/Z R+;X [z \/r-}-j.t
w=y\y= =4/"=

G+jB ‘\’/y" g+jb 5o pe
il _ [z[/ 1 —B2 o
= -,IyIABe"_ wll 2 ohms £ (370)

In the standard telephone cable case already considered, we have

_ 00 [27:38428°15708"
- 335.56£88°.56’.20"
= 285.67X42°.50'.36’" ohms.

oo ] 2734 + j1.5535
* T\ (6.214 + j335.5)10-¢

An indefinitely long line of this type would therefore offer this
impedance, for » = 5,000, at and beyond any point. In this
case, because B.° is so much larger than 8,°, the surge impedance is
nearly a semi-imaginary quantity. It behaves like a condenser in
series with a resistance. If, on the contrary, 8,°> 8:°, the slope of
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2o would be positive, and the surge impedance would be an in-
ductive instead of a condensive impedance.

A long line whose surge impedance 18 inductive calls for expenditure
of +j reactive power, as well as of active power from a traversing
eleciric wave; while a line whose surge impedance 1s condensive,
calls for the expenditure of —j reactive power, as well as of active
power, from such waves. A line whose surge impedance is reac-
tanceless, absorbs only active power in transit, without reactive,
i.e., stored or transformed, power. Reactively absorbed power
involves subsequent release, with corresponding after-effects, or
disturbance. Actively absorbed power, i.e., dissipated power,
involves no subsequent reaction or disturbance.

It is for this reason that the Heaviside distortionless circuit has
at all frequencies a reactanceless zo. That is since z/r = b/g,
B81° = B2° at all frequencies, and 8° = 0.

Loop Surge Impedances.—We have already seen (32), that the
surge impedance of a loop line is just double the surge impedance
of a wire line. Thus, in the telephone case considered, if we take
the linear constants r,,, [,,, g,, and c,,, on the loop-kilometer basis
instead of on the wire-kilometer basis, the use of (370) would yield
20,, = 571.34X42°.50'.36"” ohms instead of 285.67X42°.50'.36"".

At high frequencies, since z and b tend to become large with
respect to r and g, the surge impedance tends to the reactanceless
value:

200 = \/‘f = \/i—', ohms (371)

Initial Current at Sending End.—When an indefinitely long idle
line is suddenly switched upon a single-frequency a.c. generator,
there will immediately be an outgoing a.c. wave projected over the
line. In general, this consists of two parts, namely: (1) the
““normal wave,” such as will be delivered to the line in the final
steady state; and (2) a ‘““transient wave,” which rapidly decays
exponentially with time, and, in the course of a few cycles, prac-
tically disappears. This transient wave may be called, for con-
venience, a ‘‘splash.” The splash will be greatest if the line
switch is closed at or near a voltage crest of the generator. It will
be least, if closed at or near a zero point of current and voltage.
We may assume that by choosing the proper instant for closing
the line switch, the splash may be ignored. In that case, if

V"4 be the vector r.m.s. potential of the generator at standard
11
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phase, the initial outgoing current will be a sinusoidal function of
time, whose r.m.s. value will be

I,= }z: = Vo amp. £ (372
Similarly, at any point along the line, the r.m.s. current will be
at the outset, and at all subsequent times, equal to the r.ms.
local potential divided by the surge impedance. This means
that the potential and current waves advance steadily along the
line with their amplitudes in fixed ratio, and their phases dis-
placed by the angle yo.

In the case of a finite line grounded at the far end through 2
ohms £, or shorted in the double-wire case through z,.. = 2z
ohms £, the condition is the same. Ignoring splash, the initial
values of outgoing r.m.s. potential and current remain the
final values, because the condition is one of normal attenuation,
with no reflected waves returning from the distant end. In the
case, however, of a finite line grounded at the far end through an
impedance other than z,, there will be waves reflected from that
end, which, running to and fro over the line, will superpose
themselves upon the outgoing normal waves. In the final steady
state, the outgoing current will settle down to the value (see
(129))

Vi

L= 2 tanh &,

=V, ycothd, amp. £ (373)

and at any point P along the line

Ve
I = 2o tanh &,
Here the vector factor tanh §, takes into account all of the
superposed reflected waves which enter into the final steady
stream,* after theorctically infinite time; but, ordinarily, for
practical purposes in the course of a few cycles. This factor tanh
8p therefore converts the initial line impedance into the final line
impedance at P.

Alternating-current Surge Admittance.—The surge admittance
yo of a wire line is the reciprocal of the surge impedance. The
size of yo is therefore the reciprocal of the size of 2o, and the slope
of ¥y is the negative of the slope of zo. Thus, in the case consid-

= Ve yocothdp amp. £ (374)

* The process of summation of successive waves is discussed in Chapter
VI of **The Application of Hyperbolie Functions to Electrical Engineering
Problems’ and need not be repeated here.
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ered, yo = 1/(285.67<42°.50’.36"") = 3.5005 X 10-3£42°.50'.36"
mbho.

The surge admittance of a loop line is manifestly one-half that
of either of its component wire lines.

The surge admittance at high frequencies evidently tends to the
limiting and reactanceless value

Yoo = \fl: = \/g mhos (375)

General Relations of Potential, Current, Impedance and
Admittance with the Position Angle in Alternating-current Cir-
cuits.—The fundamental formulas for single-frequency a.c. cir-
cuits in the steady state are (99), (111), (123), (124) and (138),
already considered in connection with c.c. lines. They are here
collected for convenience of comparison.*

;1;'; = 2::: :: numeric £ . (376)
?; = (é:g:}l: :z numeric £ (377)
g:, = t:::ll:_g,; numeric £ (378)
?: = zz::*gz numeric Z (379)
5;:, = ::;:: g:: numeric .Z (380)

That s, the potential, current, impedance, admittance and volt-
amperes at any point P, bear to the corresponding known quantities
at some given point C, a simple ratio of sines, cosines, tangents and
cotangents of the position angles of P and C.

* A reader interested in seeing the contrast between these formulas and
those which have been developed by competent mathematicians, not using
hyperbolic functions, may consult the following references.

O. Heavisipg, “Reprinted Electrical Papers,” London, 1892, vol. ii,
p- 247.

M. LeBLANC, “Formula for Calculating the Electromotive Force at any
Point of.a Transmission Line for Alternating Current, Trans. A. I. E. E,,
vol. xix, pp. 759-768, June, 1901.

P. H. THoMas, “Calculation of the High-tension Line,” Trans. A. 1. E. E.,
part I, vol. xxviii, pp. 641-686, June 1909.



CHAPTER XI

FUNDAMENTAL PROPERTIES OF ALTERNATING-CUR-
RENT ARTIFICIAL LINES

A.C. artificial lines are composed of uniform sections, either
T’s or 1I's. The series elements of these sections ordinarily con-
tain resistance and reactance, and the shunt elements, or leaks,
conductance and susceptance.

There are two fundamental problems which frequently pre-
sent themselves in discussing the relations hetween real and arti-
ficial a.c. lines. The first is to find the elements of a T or Il
section which shall make the section correspond to an assigned
length of real line at an assigned frequency. The second is,
knowing the impedance and admittance element of an artificial
line section, at a given frequency, to find the line angle and surge
impedance of the section at that frequency. We shall consider
these two problems in the above order.

To Find the Elements of a T or II Which Shall Form a Section
Equivalent to a Given Length of Real Line at a Given Frequency.
The procedure is the same as in the d.c. case already considered in
Chapters VI and VII, but with the formulas interpreted vecto-
rially. That is, we find the angle 8 subtended by the given length
of real line, at the assigned frequency, and also its surge impe-
dance zo. The conductor impedance of the realsection is therefore
Z = 0z, ohms, and the dielectric admittance is Y = 6/z, = 6y..
We then map out the nominal T and I coqtaining these quanti-
ties. We next find* the correcting factors ﬂl;)g an ta 22/(—20/ 2) )
which, applied to the elements of the nominal sections, gives the
corrected elements of the equivalent sections.

As an example, we may consider a length of 7.581 km. (4.71
miles) of the telephone line already employed, at the angular fre-

* Tables of these correcting factors have already been published within
certain limits of 6, in the author’s *‘Tables of Complex Hyperbolic and
Circular Functions;” but in cases where it is desired to work out these cor-
recting factors, a good plan is to find sinh (6/2) and also cosh (6,/2) as
polars, Twice their product is then sinh 6, and their ratio is tanh (6/2).

These expressed as polars are then divided by 6 and 6/2, respectively.
164
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quency of w = 5,000. We have already seen that, at this
frequency, 7.581 km. subtend a circular angle of 30°, and
have a total angle 8 = 0.726726£46°.05'.44" hyp. = 0.50394 +
70.52360 = 0.50394 + j0.3. The surge impedance z, is 285.67
\42°.50’.36"" ohms. The conductor impedance of this length is
therefore 0.726726£46°.05’.44" X 285.67\42°.50".36"" = 207.602
£3°.15’.8" ohms. The dielectric admittance is 0.726726£46°.5’.-
447/285.67<42°.50'.36" = 2.5439 X 10—3£88°.56’.20"’ mho. We
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F1u. 88.—Nominal and equivalent T and II artificial-line sections.
draw the nominal T and II containing these values, as shown at
AOB, and A”B’”, Fig. 88. We now find the correcting factors

sinh (0.726726£46°.5".44"") nd tanh (0.363363£46°.5".44"")
0.726726£46°.5'.44” 2" 0.363363£46°.5".44"

to the required degree of precision, from charts, tables, or cal-
culation. They are as shown in Fig. 88, 0.998189/5°.2.36", and
1.00033K2°.31'.22"”, respectively. These are the lumpiness
corrections. For many practical purposes, these correcting
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factors are so near to 1.0£0° as to be negligible. In other word:.
up to the frequency w = 5,000, the nominal sections of artificial-
line T's or II’s may be regarded as subetantially the same as the
equivalent sections up to line lengths of 7.58 km. (4.7 statute
miles). The equivalent sections are indicated at aob and a"b".
Fig. 88.

I and O Sections of Double-wire Artificial Line.—If we desired
two-wire artificial-line sections, we should connect a pair of
equivalent T's, or a pair of equivalent II's by their feet, to form
what may be called an equivalent I and an equivalent O section,

108. 63 [0° 8 46" 18.5%6 [0°43° 8" .25 621 0
103744 1. 3219 103,754 451,329 26.057+ 529.998 @
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F16. 89.—Double-wire I and O artificial-line sections.

respectively, as in Fig. 89. The angle subtended by an equiva-
lent I or O is identical with that subtended by the corresponding
equivalent T or II. The surge impedance of the I or O is, as we
have already seen, just double the surge impedance of the T or
I respectively.

If we connect in series a number of such equivalent T’sor IT’s, we
obtain a corresponding length of artificial T or II line, as in Fig.
90, which shows the distribution of carrent and voltage over the
first four sections of such a pair of lines. Each line is supposed
to have been rendered virtually infinite, by grounding, after any



FUNDAMENTAL PROPERTIES 167

desired number of sections, through. an impedance of 285.67
N42°.50’.36"” ohms. An impressed a.c. potential of 1.0 r.m.s.
volt is applied at A, the generating end, at a frequency of f =
796~, or w = 5,000.

Unrealizable Artificial-line Sections.—It will be noticed in
Figs. 88 and 89, that there should be no difficulty in constructing
and adjusting the elements of the equivalent II or O. The
architrave should have an inductance of 29.898/5,000 = 5.9796
X 1072 henry, with resistance added up to 205.06 ohms, prefer-
ably of insulated manganin wire. The II leaks should have
1,272.36/5,000 = 0.254 uf capacitance, at the impressed fre-
quency, with an associated leakance of 6.326 micromhos. By
taking sufficient pains, these values could be adjusted to within
desirable limits of precision. In the case, however, of the equiva-
lent T and I, there would be no way of obtaining, without the
aid either of inductive devices or of parallel branches, the re-
quired staff elements, by simple series connection of resistance
and capacitance, because the slopes of the T leaks exceed 90°.
In the case of this length of real line section, and for this assigned
frequency, the equivalent T sections would have arithmetical
significance only, and would not be physically realizable, in the
laboratory, by ordinary simple means. At other frequencies, and
with other lengths of real-line section, we might find both T and
IT realizable. It sometimes happens that neither the T nor the II
is realizable. In such cases, another length of real-line section
should be selected for imitation.

Grapbs of Normal Attenuation on Alternating-current Arti-
ficial Lines.—If we plot the values of potential and current
over the virtually infinite artificial lines of Fig. 90, by com-
parison with the corresponding values over the conjugate smooth
line, as in Fig. 87, we are led to the constructions of Fig. 91,
where ABCD is the potential spiral, A’B’C’D’ the current spiral,
and the constant phase difference between these two spirals is
left out of consideration, in order to facilitate inspection. Turn-
ing to the potential spiral, Fig. 91, OA being the impressed unit
r.m.s. potential at 4, to standard phase, then the curve ABCDEFG
represents the fall of potential along the conjugate smooth line,
as in Fig. 87. The potential drops in the line elements of the II
line are indicated, both in magnitude and phase, by the interior
straight lines, or chords, AB, BC, CD, ete.  Similarly, the poten-
tial drops in the line elements of the 7T line are indicated, both in
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magnitude and phase, by the exterior straight lines Ak, kBl, ICm,
etc. At the junctions the potentials are the same, on both the ar-
tificial lines, aswell as onthe real conjugate line. The T-line nor-
mal-atlenuation potential thus falls on an external contacting equi-
angular-spiral polygon, and the I1-line potential falls on an internal
contacting polygon, the points of contact representing the terminals
and junction points of the sections. To construct these polygons,
first draw the equiangular spiral ABCD for the conjugate smooth
line or real line. Mark off a mid-section point such as 7, where

~—_
c Qi.i»;*l - oA

Fia. 91.—Normal attenuation graphs on a real line and on its conjugate
artificial T and II lines.

the radius-vector O: bisects the circular section angle AOB.
Operate on the vector Oi by cosh v; 7.e., cosh (8/2), and sech v, or
sech (6/2), so as to produce the vectors Oj and Ok respectively.
In the case of Fig. 91, cosh (6/2) = 0.998932£3°.46’59"’, and
sech (6/2) = 1.00107X3°.46'.59"””. The point j will bisect AB.
Join Ak and Bk, which will be the vector drops in the arms of the
T section, to scale and phase. Moreover, kB will be equal to and
in line with [B.

Turning now to the current graph A’B’C’D’, Fig. 91, the curve
is the normal attenuation spiral of the conjugate smooth line to
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initial current standard phase. At junction points B’C'D’,
the line currents are in coincidence with each other, and with the
contacting equiangular spiral. If we operate on the mid-section
vector such as O by cosh (0°2) and sech (6/2), as before, we
obtain the vectors 0j’ and Ok’, the former bisects A’B’, and repre-
sents the vector arithmetical mean of the line currents 3.5005£0°
and 2.1148X30° in the two branches of the first 7' section.
The latter, Ok’ represents the current at the middle of the first I
section, 7.e., the current in the architrave of that section. Thus
the I1-line normal-attenuation current falls on an external contacting
equiangular spiral polygon, and the T-line current falls on an tnter-
nal contacting polygon, the points of contact representing the
terminals and junction points of the lines. The successive sides of
these current polygons represent the magnitudes and phases of
the leak currents. Each polygonal side may be regarded as
equivalent to the vector sum of all the infinitesimal leaks in the
subtended smooth section. It will be understood that at any
II-line junction, the true line current requires replacing the single
leak at that junction by a pair of parallel half-leaks, and placing
the ammeter in the line between them, as in Fig. 41.  Otherwise
the true line current will be only arithmetically realizable, as the
vector arithmetical mean of the two line currents on each side of
the junction. Thus, at the end of the first II-line section, the
true line current would be to voltage standard phase

0.56440£32°.21’.28" + 0.3409822°.21’.28"

9 = 2.1148/125.50".36"

milliamp.

In regard to potential and current, therefore, the 7' and II lines
are mutually reciprocal. The II line always follows, for poten-
tials, the inside polygon, and, for currents, the outside polygon.
This ig true not only in the equiangular spiral graphs, controlling
normal attenuations; but also in the hyperbolic-function graphs,
which, as we shall see, control in the general case, and of which
the equiangular spiral is but a limiting instance.

Deduction of Section Elements from Their Measured Values
of 6 and z,.—Another form in which the preceding problem may
present itself, is that where measurements of an artificial line,
at a given frequency, in the manner described in the next chap-
ter, and based on formulas (273) and (275), lead to correspond-
ingly deduced values of the section angle 6 and surge impedance
2. The problem then is to find the elements of the section in
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line ilnpedance and leak admittance at that frequency. The pro-
cedure is the same as that above outlined. The nominal linc
impedance of the section is 6zo ohms, and the nominal leak admit-
tance 8yo mhos, in either one or two leaks, according as the section

isaTorall section. The nominal T or IT is thus formed, and the
correcting factors snpoh i an _tanl;/(g /2 applied to their elements,
to form the equivalent elements. These equivalent values are
the respective line impedances and leak admittances, which the
section elements possess at the frequency of the measurements.
To Find the Line Angle § and Surge Impedance z, of a T or
II Section of Given Elements.—In this problem, we start with
either T or II sections, all similar and symmetncal the line
impedance and leak admittance
elements of which, at a given , 78.651+j880.516 = 388868 L 783310

A B
frequency, are known. We 2|2 o>
then have to find the section (3 32
line angle 6 and the surge im- & ,‘,;si 0= 0.2+ 0.8 hyp. }8, 8
pedance 2o. 8|2 2zp-4007 8°ohms 5 §;

The procedure corresponds, 3 g 0 b
under a.c. conditions, to that g ! g g
already found, under d.c. con- < v

ditions, for a T section by (170)  Fie. 92.—II secction of elements
and (171), or for a II section by 2{,‘;’;0 :::;233:,22 :f ‘;‘,‘;’ '&03351;,.9 and
(204) and (206). These for- _

mulas are now applied vectorially. We may take the following
illustrative example. ‘

A 11 line A B, of ten sections, is grounded at B through an impe-
dance of ¢ = 1,216.936£72°.329 = 369.4 + j1159.5 ohms, the
impressed angular frequency being « = 5,000 radians per sec.
Such a terminal load would be produced by a resistance of 369.4
ohms, containing an inductance of 231.9 millihenrys at this fre-
quency. Each line section has a line impedance of r = 388.853
£78°.331 = 78.651 + j380.816 ohms, and a pair of leaks each of
admittance 1.82858 X 10-3£86°.047 = (126.05 + ;j1824.2)10-¢
mho, as shown in Fig. 92, the measurements heing made at w =
5,000. Required the line angle and surge impedance of each
section. These particular eclement values are selected, partly
because they approximately correspond to an artificial line* on

* “Test of an Artificial Aerial Telephone Line at a Frequeney of 750

Cycles per Second,” by A. E. KExNELLY and F. W. LikBERKNECHT, Proc.
A. L E. E, June, 1913.
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which similar tests have been already made and reported, partly
because such an artificial line corresponds fairly well to a particu-
lar actual aerial telephone line, and partly because the position
angles come out in simple round numbers, which may be found
in the published tables without interpolation.

Following formula (204) we have

sinh v = \]388;393 £78°.331 X 1.82858 X 10-3/86°.047
= 4/0.3555242164°.378 = 0.59626/82°.189.

In the published tables and charts (Table X), it is found that this
corresponds precisely to v = 0.1 + j0.4 = 0.1 4+ ;70.62832 =
0.63623£80°.957 hyp. In general, it would be necessary to
employ interpolation in the charts or tables, with some sacrifice of
numerical precision; or else to use formula (517), Appendix B.

g ZEMOATIH .09 = sn e Lwws10 s

0=02+3508 2= 0078’0

. -

4 = (57.906 +3 310.6) 10" = 3, 15113 10" §8.967
Fic. 93.—Smooth-linc section conjugate to assigned II.

In this case, the section angle § = 2v = 0.2 + j0.8 = 0.2 +

j1.2566 = 1.27246£80°.957 hyps. The angle subtended by the
whole line of ten sections would therefore be 2.0 + ;8.0 hyps.

The normal attenuation factor of potential or current on such a
line would be ¢2 = 0.13533. The normal phase attenuation
would be eight quadrants, or two complete waves of potentials or
current developed over the line, or the line would include two
wave lengths. At this frequency it would be a two-wave line,
and the artificial line would have five sections to a wave.

The apparent or uncorrected surge impedance of the line would
be, by (159),

"o 388.853£78°.331  _  ,cioon ot g
W= \/3.65718x10—“£86°.047 = V10.6327 X10'\7°.716
= 326.078X3°.858 ohms



FUNDAMENTAL PROPERTIES 173
and the true or corrected surge impedance by (186) is

326.078<3°.858 _

— I/ , = LT T IET = ©
20 = 2/'/cosh (0.1 + j04) 0.8152024°.142 400<8° ohms.

The conjugate smooth line would, therefore, have a total angle of
2 4+ j8 = 2 + ;12,566 = 12.725£80°.957 hyps., and a surge
impedance of 400<8° ohms. If this line had a length of say 800
km., then a length of 80 km. would correspond to one section of
the artificial line, and would subtend 0.2 + j0.8 = 0.2 + ;1.2566
=1.27245/80°.957 hyps. The conductor impedance of the 80
km. smooth-line section, would be 1.27245/80°.957 X 400X8°
= 508.981£72°.957 = 149.177 + j486.629 ohms. The linear
impedance of the smooth line would be 6.36225,72°.957 =
1.8647 + j6.08286 ohms per wire km., corresponding to a linear
inductance of 1.2166 millihenrys per wire km. The dielectric

938408+ 275.010702 ) 99.8108+)276.0107Q |
—— B
292,673 L 70.047 2| o5 292.573 L70.047

331

6-02+;j0.8 Zm400 T8°Q

(-0.188515+ 3 2.42339) 10

2.43038 X 10-° L 94

Fii. 94.--T section equivalent to assigned II.

admittance of the 80-km. smooth-line section would be 1.27245
£80°.957/(400<8°) = 3.18113 X 10-3/£88°.957 = (57.906 +
73180.6)10-¢ mho. The linear dielectric admittance would thus
be (0.72383 + j39.757)10-¢ mho per wire km., corresponding to
a linear capacitance of 0.0079515 uf. per wire km. The smooth
section is indicated at ab, Fig. 93.

The equivalent T of the section is shown in Fig. 94 at A’OB’.
It will be scen that it happens to be unrealizable because the
slope of the leak admittance is 94°.331, and no simple
admittance can have a slope exceeding 90°. However, we may
assume, for the purposes of comparison between equivalent
II and T lines, that this T section is not only arithmetically
realizable, but is also physically realizable, by some special
means, employing, say, the aid of mutual inductance.
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Fall of Potential along Artificial and Conjugate Smooth Lines.
—To illustrate the comparative behavior of T, II, and conjugate
smooth lines, we may consider ten-section lines of the three types
shown in Figs. 92, 93 and 94, operated at the A end with an im-
pressed potential of 1.0 volt r.m.s., at w = 5,000, and with a
terminal load at B, in each case, of ¢ = 1,216.936£72°.329 ohms.
The angle subtended by the B terminal load is (89)

1,216.936£72°.320\ . . o
i ) = tanh~1(3.0423480°.329)
= 0.05 + jO.8 hyp.

The three types of II, T, and smooth line are indicated in Figs.
95, 96 and 97 respectively. The position angles of the junctions
are also indicated, as pertaining to each of the three lines.

0’ = tanh™! (

AX 9IX SVIIITVII6 VIG V 4 IVSII2 11 I B

CEETTTTTT T T T ™,

A X9IX SVIIITVII6E VIS Vv 4 IV 3III2 111 1B

CETTTITTTT

A 9 8 1 [] 5 4 3 2 1 ;l"‘%K
F1a. 97.

oS &4 & J3 3 I3 FF I 2

- -~ ‘e - - ‘e - - ~ ) -

.-g + + + + + + + + + +

2 8 3 9 8§ 2 3 B8 3 8§ 8

L - - - - - o o =) <o <

Artificial IT and T lines with their conjugate smooth line.

Remembering that the potentials along any such line are as
the sines of the position angles, we obtain the results presented
in Table VIII. The first column marks the position along the
line, and the second column the distance z in kilometers from the
generator end. Column III gives the corresponding position
angles, from 0.05 4 j0.8 hyp. at the B end, to 2.05 + j8.8 hyps.
at the A end. The sines of these position angles, as given in the
published tables of “ Complex Hyperbolic Functions,” appear in
the fourth column. In the fifth column of potential V5, starting
with the impressed potential of 1.0£0° volt r.m.s., at A, the re-
maining values are simply proportional to the sines of the position
angles. The last two columns contain the particulars for the II
and T lines respectively. At junction points, denoted by the
arabic numerals, the potentials on all three lines are identical.
At mid-sections, the T-line potentials are cosh v times the corre-



F1G. 98.—Potential distribution over real and artificial lines.

assumed impressed potential. The inwardly directed spiral
curve 4, 9, 8, 7, 6, ete., represents the fall of potential from the
generator end at A, to the motor end B, using the values in col-
umn 4 of the table, and also intermediate values. The smooth-
line potential graph is seen to be a smooth spiral, .e., a complex
hyperbolic sinusoid, making not quite two turns. The voltage
attenuation factor of the whole linc is shown in Table VIII to be
0.24195, as against 0.13533 in the normal case, and the lag in
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phase amounts to 703°.481, as against 720° in the normal case.
The same is true for the conjugate artificial lines. On these,
however, the fall of potential takes place in successive straight
lines. For the IT line, these straight lines are internal chords
to the spiral; while, for the T'.line, they are external chords,
marked in broken lines. Thus, in the first II section, the poten-
tial drop is A9 = 1.0716£44°.542 = 2.7557 X 1073X33°.789 X
388.853£78.331 volts, a voltmeter value greater than the initial
impressed e.m.f. The drop in the first half of the first T section,
is similarly AX = 2.43385 X 10—3£6°.883 X 292.573£70°.047 =
0.71208£76°.930. The mid-section point of the smooth line has
its potential indicated at Om = 0.88741X35.°441. If this is
multiplied by cosh v, or 0.81520/4°.142, we obtain the mid-
point potential Og = 0.72341X31°.299, in the middle of the
chord A9. Again, if we divide Om by 0.81520£4°.142, we
obtain OX = 1.08858\39°.583 volts, the potentiz‘ﬂ at the first T
leak.

Proceeding in this way, the lines joining the mid T-section
points X, IX, VIII, etc., contact with the spiral at their respective
centers. At the junction points 9, 8, 7, etc., the internal and
external spiral polygons contact with the smooth-line spiral.
General Considerations of Alternating-current Potential Fall.
Although the numerical values tabulated and charted in Table
VIII and Fig. 98 pertain to this particular line, operated at the
selected frequency, and under the particular assigned motor load,
yet the results indicated are typical of fairly long aerial lines
operated at any moderate or audio frequency (between 100~ and
10,000~), under any ordinary load. The procedure is the same
in all cases, except when the terminal load happens to have an
impedance very nearly equal to the line’s surge impedance, in
which case the voltage spiral approaches, as we have seen, the
equiangular spiral of normal attenuation, instead of a sinusoidal
spiral of stationary-wave attenuation, corresponding to the gen-
eral case of superposed waves reflected from the motor end of
the line. When the impedance of the motor load differs from
the line’s surge impedance, the position angle at B may always
be found by (89), from tables, charts or computation, whether
the size of the motor load impedance is large orsmall;.e., whether
the line at B is freed, grounded, or in any intermediate state
differing from z,. The potential at any position angle then fol-

lows the sinh of that angle, and there is no exchange from sinh
12
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to cosh, as we have seen may occur in the c.c. case with large
motor-load impedances. In this respect, the a.c. interpretation
of the algebraic theory is simpler than the c.c. interpretation.
Current Distribution over Artificial and Conjugate Smooth
Lines.—The distribution of current over the lines, at the selected
frequency and motor load, is shown in Table IX, which is drawn
up like Table VIII. Column 4 gives the tabular values of the

Fia. 99.—Current distribution over real and artificial lines.

cosines of the position angles at junctions and mid-sections. The
r.m.s. current entering the line at A is 2.43385 X 10-3£6°.883
amp. by (126). The line currents at the other positions are then
simply proportional to the cosines of the position angles. At
junctions, the currents in the artificial lines are identical with the
currents in the smooth line; except that in the case of the II line,
in order to measure the line current at a junction, it is necessary
to substitute a pair of semi-leaks, each of g/2 mhos, for the single
leak g mhos, and to insert the ammeter in the line between the
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two semi-leaks (Fig. 41), as already explained in relation to 1201 .
Otherwise only the II mid-section currents can be measured.

Column 6 gives the T mid-section currents, by applying cosh:
to the corresponding smooth-line mid-section currents, in the
manner set forth with (230): while column 7 gives the II mid-sec-
tion currents, according to (242).

The polar graph of the current distribution over the three lines
is given in Fig. 99, to voltage standard phase. The entering
current is 04 = 2.43385£6°.883 milliamp., as in Table IX, or a
current leading the impressed voltage at A by 6°.883. Along
the smooth line, the current changes its phase from point to
point, along the complex cosh curve, or inwardly directed hyper-
bolic cosine spiral 4,9,8,7 . . . B, making in all, 782°.693 of
rotation or more than two complete revolutions.

The internal spiral polygon 4, 9,8 . . . B, belongs to the
T line, and the external polygon to the II line. The vector Om
indicates the smooth-line current at the first mid-section X.
Oq = Om-coshr, and OX = Om-sechr. Consequently, when an
ammeter is inserted in this architrave of the II line, the current
observed is Oq.

The chords of the artificial-line spiral polygons necessarily
measure the currents in the leaks. Thus 04 — 09 = 94, the
vector current in the T-line leak X, namely, 1.08858<39°.583 X
2.43033 X 1073£94°.331 = 2.6456 X 10—2£54°.748 amp. Simi-
larly, X4 is the vector current in the semi-leak at the entering
end of the II line, 9X and IX 9, the currents in the semi-leaks at
I junction 9. If there is only one full leak g at this junction, the
current in it will be JX-X milliamp.

General Considerations Affecting Alternating-current Graphs
of Potential and Current.—It will be observed that the spiral
relations of potential and current graphs on T and II lines are
mutually inverted. The T-line graphs are the internal spiral poly-
gons on the current diagram, but they are the external polygons on
the rvoltage diagram. -

It will also be noticed that the circular angle subtended on
these graphs by a section, although identical for any one section
on all three types of line. are very different for different sections.
Thus in Fig. 99, or Table IX. the last section B-1 subtends an
arc of nearly 200°; while the next section, 1-2, subtends only
about 27°. The same remark applies to the potential graph.
Consequently, although :n the equiangular gpirals of normal atienua-
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tion, equal line sections subtend equal circular arcs, yet in the
ordinary case of a hyperbolic sine or cosine spiral of standing-wave
attenualion, equal line szctions do not, in general, subtend equal
circular arcs, especially near the motor end of the line. For this
reason, these two-dimensional graphs of potential or current are
inadequate to present a correct idea of distances along the line,*
and some other device such as a three-dimegsional model must
be resorted to, if a correct distance representation is called for.
Neve:theless, the relatively simple two-dimensional diagrams of
Figs. 98 and 99 suffice for many purposes.

Distribution of Impedance over Alternating-current Artificial
and Conjugate Smooth Lines.—It is evident from (126) that the
line impedance of any real uniform line, in a steady a.c. state,
must be a continuous quantity, without sudden changes or dis-
continuities, in the absence of localized leaks or inserted loads.
In the case of lumpy artificial lines, however, the line impedance
undergoes a discontinuity, or takes a sudden jump, at each
leak.

Table X shows the distribution of line impedance for the par-
ticular case already discussed. Column 4 gives the tangents of
the position angles, and column 5 the line impedance, respectively
proportional to them. In columns 6 and 7 are the corresponding
values for the IT and T lines.

It will be observed that the line impedance commences, for all
three lines, at A with 410.872<6°.883 ohms. An indefinitely
long line of this type would offer zo0 = 400<8° ohms. The line
impedance ends at B, with 1,216.936£72°.329, for all three
types, this being the assigned impedance of the motor load.

In the case of the IT line, of column 6, the impedance falls at
the entrance leak from 410.872X6°.883 to 362.885£33.°789 ohms,
by (212). At the mid-section X, it is 262.512£2°.490. At the
upside of leak 9, it is 285.913<38°.762 ohms, and in the middle
of that leak, i.e., at junction g, it is 380.700<8°. Similarly, for
the T line in column 7, the entering impedance at A is 410.872¥X
6°.883 ohms. At the upside of the leak X, it is 447.265X46°.466
ohms, and at the downside it is 525.987£24°.968 ohms. Twice
the joint impedance of these last two values is 594.437X14°.078

* “Telephonic Transmission Mensurements,” B. S. Conkx and G. M.
SHEPHERD, Journ. of Proc. Inst. Elec. Engrs., London, vol. xxxix, p. 503, 1907.

See also “The Theory of Alternate-current Transmission in Cables,”
by C. V. DrYsDALE, The Electrician, December, 1907 and January, 1908.
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ohms, which is obtained from Z,» in column 5 at X, by multiply-
ing with sech? v or 1.50477<X8°.284, in accordance with (231).

Fi1c. 100.—Impedance of conjugate smooth line.

The graph of line impedance over the conjugate smooth line
is indicated in Fig. 100. Starting with OB = 1,216.936£72°.32¢
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)
F1a. 101.—Line impedance on T line and on conjugate smooth line,
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Fic. 102.—Line impedance on I line and on conjugate smooth line.
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ohms at the motor end, the line impedance in the first half sec-
tion exceeds 4,000 ohms, in a widely extending spiral. There
are, in all, about four turns in this inwardly directed hyperbolic
tangent spiral, or about twice as many convolutions as in either
of the potential or current graphs.

The parts nearer to the origin of Fig. 100 are repeated, in Fig.
101, on an enlarged scale. The T-line impedances are also indi-
cated therein. Each junction point 1, 2, 3, etc., on the spiral, is
intersected by a straight line extending 292.573£70°.047 ineach
direction, or having a length of 585.146 ohms in all. These
straight lines are the continuous portions of the T-line impedance
graph. Between their ends, there are jumps or discontinuities,
due to the sudden effects of the leaks, and indicated by broken
connecting lines. Thus the graph jumps from II to IT’, from III
to IIT’, and so on. The continuous portions of the T-line impe-
dance graphs are thus a bundle of equal and parallel straight lines,
whose middle points coincide with corresponding junction points on
the smooth-line spiral.

The corresponding graph for the II line is presented in Fig.
102. Here the continuous portions are a bundle of equal and
parallel straight lines, or vectors of 388.853£78°.331 ohms, the
mid-points of which are related to the corresponding smooth-line
mid-points by the operator, cosh? v.

General Considerations Concerning Line Impedance.—The
foregoing discussion indicates that the line-impedance graph of
a smooth line, in the general case, is a tanh spiral of two convolu-
tions per wave of voltage or current, and confined to the right-
hand half of the complex plane, the phase angles being ordinarily
limited to +90°. The line-impedance graphs of artificial lines
are discontinuous, and more complicated. At junction points,
however, coincidence is complete, assuming that II-line leaks are
provided in contiguous pairs.

Since the phase-angle variation of line impedance is approxi-
mately twice as rapid as that of potential or current (1.7° per
km. in the case considered), the measurements of line impedance
at the successive section junctions are particularly liable to be
vitiated by accidental changes in impressed frequency.

Distribution of Power over Alternating-current Lines.—The
distribution of power over a smooth a.c. line may be computed
in two ways. First, the local potential and current may be found,
as in Tables VIII and IX. The complex power has then, as its
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size, the volt-amperes, 7.e., the product of the sizes of the volts
and the amperes, and, for its slope, the difference of the slopes
of the volts and amperes. Thus, if at position P, the potential
is Vo= V5 £By° volts, and to the same reference phase, the cur-
rent is I, = I, ZB,° amp., the power at P is either:

Pe= Vpi-'Ip L(8v — B°) watts £ (381)
or Pem Voo Lo 2r—B7)  watts £ (8

according as the power is reckoned to current or potential phase
as reference standard (Fig. 71). In the case of the c.c. circuit,
the power Pr = VI, watts, where all of the three quantities P,
V and I are real. In the case of the a.c. circuit, this equation
will hold only if one of the two complex quantities has Z0° slope,
or is taken as of local standard phase, and the phase of the other
is reduced to this local standard. Thus if to the same reference
phase, V = 100£60° r.m.s. volts, and I = 2/30° r.m.s. amp., the
local complex power will be 200£30° watts to local current stand-
ard phase, or 200X30° watts to local voltage standard phase.

The second method of computing the distribution of power
over the a.c. line is to write down the sinh of twice the position
angle opposite each position. The size of the power will then be
directly proportional to the size of sinh 285, and the slope of the
power, to current standard phase, will be the slope of the line
impedance at that point.

That is, if V. and I, are the vector potential and current at
some point C, whose position angle is &,
Ve-Ip _ sinh ép-cosh 6 _ sinh (265)
Ve-Io  sinhdg.cosh ¢ sinh (28,)

|Pp| =|sinh (28p)]

|Pc|  |sinh (28¢)|
or the size of the vector power is as the sinh of twice the posttion angle.
Moreover,

numeric Z (383)

or

_P,"‘ = E;./I,; = zo‘tanh Bp = :Z{, cir. degrees (384)

or the slope of the power at any point s the slope of the line impe-
dance at that point, to current phase as standard.
Therefore, to local current standard phase,
P!

% = L si 7z -
Pe isinh 25! Isinh 28, Zp watts £ (385)
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The real component of the local vector power P is active power,
or the rate of energy flow past the point, outward bound from the
circuit; while the imaginary component of P, is reactive power,
or the rate of energy flow past the point into storage, or for re
tention in the circuit.

If we seek for the vector power to potential local standard
phase, we must reverse the slope of (385) or

|P|
Pr = 1sinh 25"
where Y, is the line admittance at and beyond P.

Table XI gives the distribution of vector power over the con-

jugate smooth line under consideration. Column 4 shows the

sinh 285| - Y, watts £ (386

F16. 103.—Graph of vector power along conjugate smooth line.

doubled position angles, and column 5 the sizes of the corre-
sponding tabular sines. The slope of Zp, taken from Table X,
appears in column 6, as the slope of the power. Column 7 gives
the vector power, proportional to the value in column 5, and also
equal to the local product of Vp and I, (Tables VIII and IX),
with I, at local standard phase. The real components, or local
active powers, appear in column 8, and the reactive components
in column 9. The active power is always positive, and steadily
diminishes from the generator toward the motor end. The suc-
cessive differences are due to the local values of T2 r along the line.
The reactive power changes sign several times.

Fig. 103 gives the graph, in polar coérdinates, of the vector
power along the line. Near the generator end, the power in-
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creases rapidly in size, but approaches the limiting value of —8°
in slope. The power graph for an indefinitely long uniform a.c.
conductor would be a radial straight line. Near the motor end,
the fluctuations of power are rapid both in size and slope.

The active and reactive power components of the power are
plotted separately in Fig. 104. The active power falls off with
distance along an approximately exponential curve. The re-
active power fluctuates through about four waves.

The powers at junctions along the artificial line are vectorially
identical with those at corresponding junction points on the con-
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FiG. 104.—Active and reactive components of power along conjugate
. smooth line.

jugate smooth line. At mid-sections, the volt-amperes or power
sizes agree with those at smooth-line mid-sections, but the slopes
are different; so that the active and reactive components do not
tally, unless corrected.

Thus, if we consider the first IT section at the generator end,
we find from Tables VIII and IX that

Vx = 0.72341X31°.299 volts, and I'y = 2.7557<33.°789 milliamp.
To local current standard phase, these become
V'x = 0.72341£2°.490 volts, and I'x = 2.7557£0° milliamp.

The power at this mid-section point of the II line is then
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Py = 0.72341 X 2.7557/2°.490 = 1.9935£2°.490 milliwatts

But the power at the corresponding point on the smooth line
(Table XI) is P.x = 1.9935X5°.794 milliwatts; so that Py =
P.x/8°.284; or the power at the II-line mid-section has a slope
8°.284 greater than that at the corresponding smooth-line mid-
section. This condition will be found to apply throughout.
The slope of cosh? v is 8°.284, and at any midsection,

P = Px £(Px —cosh?v)  watts Z (38
or Px = Px 4£(Px + cg_)sh’ v) watts Z (388

Plural Frequencies or Complex Harmonic Potentials and Cur-
rents.—We have hitherto assumed that the impressed a.c. vol-
tages employed possessed one and only one frequency, or were
purely sinusoidal; so that, in the absence of iron-cored coils in
the circuit, the currents over the line were also of single frequency.
We may now consider the effects of plural impressed frequencies;
i.e., of the ordinary complex harmonic impressed e.m.f., containing
a fundamental frequency associated with multiple frequency
harmonics. The nth multiple of the frequency is called the nth
harmonic. The fundamental may thus be included as the first
harmonic.

In order to deal with the plural-frequency case quantitatively,
it is necessary to analyze the impressed potential wave into its
harmonic components. As is well known, the complete Fourier
analysis of a complex wave may be written

Vo+ V/isinwt + V'2sin 2wt + V'3 sin 3wt + V' sin 4t + . .

+ V", cos wl + V"2 c08 2wt + V"5 cos 3wt + V" cos 4wt + . .
volts (389)

where ¥ is a continuous potential, such as might be developed
by a storage battery, ordinarily absent in an a.c. generator wave,
Vi, V', V', Vs, ete., maximum cyclic amplitudes of the various
sine and cosine components. The even harmonics are ordinarily
negligible in an a.c. generator wave; so that V’s, V", V',V
etc., are ordinarily all zeros. If we count time from some moment
when the fundamental component passes through zero in the
positive direction, 1"/, = 0 and the series becomes

Vhsinwt + V3sin3wt + Vesindof + . . . .
V7 cos 3wt + V5cosdot + . . . . volts (390)
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{ Compounding sine and cosine harmonic components into result-
» ant harmonics of displaced phase, this may be expressed as

V,isin ot + V. sin (3wt +-65°) + V. sin (5wt + 8:°) + . . .
volts (391)

where Ven = VV 2 F V72 volts (392)
and tan 8,° = -‘li,,—" numeric (393)

Formulas (389) and (390) give the wave analysis in sine and
costne harmonics, while (391) gives it in resultant sine harmonics.

When considering a plural-frequency a.c. line, we require to
know the harmonic analysis of the impressed potential, either
in sine and cosine harmonics, or in resultant harmonics. The
latter analysis is preferable, as being shorter and containing fewer
terms. A decision must be made as to the number of frequencies
or upper harmonics which must be taken into account.

Ordinarily, the sizes of the harmonics diminish as their order
increases; but there are numerous exceptions to this rule, as
when some particular tooth frequency in the a.c. generator
establishes a prominent size for that harmonic. Care must there-
fore be exercised not to exclude any important harmonics. On
the other hand, the fewer the harmonics to be dealt with, the
better, because the labor involved in correctly solving the
problem increases in nearly the same ratio as the number of
harmonics retained.

The rule is to work out the position angle, r.m.s. potential, and
r.m.s. current distributions, over the artificial or conjugate smooth
line, for each harmonic component in turn, as though it existed
alone, and then to combine them, at each position, in the well-
known way for root mean squares.

Combination of Components of Different Frequencies into a
R.m.s. Resultant.—Let the r.m.s. value of each a.c. harmonic
component be obtained by dividing its amplitude with 4/2 in
the usual way, and let

Va = r/'; = \/ Va2 '; Va2 r.m.s. volts (394)

be the r.m.s. value of the nth harmonic. Then the r.m.s. value
of all the harmonics together, over any considerable number of
cycles, will be

V=+V2e+V2+Vs2+.... r.ms. volts (395)

13
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or, as is well known, the joint r.m.s. value of a plurality of r.m:s
values of different frequency, is the square root of the sum o
their squares. If a continuous potential Vo be present, this ma
be regarded as a r.m.s. harmonic of zero frequency, and be ir-
cluded thus:

V=aA/Va+Vi+Va+ Vet .. .. r.m.s. volts (3%
Moreover, from (392), it is evident that the squares of the r.m.s.
values of the sine and cosine terms of any harmonic may be sub-
stituted for the square of their resultant; or that, in this respert,
the sine and cosine terms may be treated as though they were
components of different frequencies.

The same procedure applies to plural-frequency currents.
Find the r.m.s. resultant harmonics. The r.m.s. value of al
together will be the square root of the sum of their squares. A
continuous current, if present, may be included, as the r.ms.
value of an alternating current of zero frequency.

Graphical Representation of R.m.s. Plural-frequency Com-
bination.—The process represented algebraically in (395) or (3%)
may be represented graphically by the process of successive per-
pendi¢ular summation, or ‘“crab addition.” An example will
suffice to make this clear. A fundamental alternating current
of 100 amp. r.m.s., is associated with a continuous current of 50
amp., and with two other alternating currents of other frequen-
cies of 20 and 10 amp. r.m.s., respectively. What will be the
joint r.m.s. current? Here by (396),

I = /1007 + 50 + 20 + 10* = 4/10,000 + 2,500 + 400 + 100
=4/13,000 = 114.0175 amp. r.m.s.

In Fig. 105, OA represents the fundamental r.m.s. current.
A B, added perpendicularly to OA, represents the continuous cur-
rent, or current of 50 r.m.s. amp. at zero frequency. The per-
pendicular sum of OA and AB is OB = 111.8034 amp. Adding
similarly the other frequency components BC and CD, the total
perpendicular sum is OD = 114.0175 amp. The order in which
the components are added manifestly does not affect the final
result, and it is a matter of insignificance whether the various
frequencies coacting are ‘“harmonic,” i.e., are integral multiples
of a fundamental, or not, so long as they are different.

The complete solution of an a.c. line with complex harmonic
potentials and currents thus requires an independent solution of
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potential and current for each single frequency in turn, as though
the others were non-existent, and then the r.m.s. value at any
point on the line is the perpendicular sum of the separate fre-

o

Fi1a. 105.—Geometrical representation of a joint r.m.s. value of plural-
frequency components by perpendicular summation or * crab addition.”

quency values. The powers and energies of the different fre-
quencies are independent of each other, and the total transmitted
energy is the sum of the energies transmitted at the separate
component frequencies.



CHAPTER XII

DESIGN AND CONSTRUCTION OF ARTIFICIAL
ALTERNATING-CURRENT LINES

The ordinary a.c. artificial line, designed to represent the be-
havior of a given actual line at a specified frequency, requires
a definite amount of line resistance and inductance per section,
and also a definite amount of leakance and capacitance per sec-
tion. This calls for reactors, with or without external resistance,
in the line, and condensers, with or without external resistance,
in the leaks. In certain cases, however, such as artificial twisted-
pair telephone cables, or artificial submarine telegraph cables,
the inductance required in the line circuit is so small that it can
be neglected.

The preliminary calculation designs, conducted in the manner
already indicated, will show how much line impedance and shunt
admittance is required per section, and the numerical values of
the elements needed for the equivalent 7 or II.

Relative Merits of T and II Sections.—As to the choice be-
tween T and II sections, assuming that they are both readily
realizable, T sections have the advantage that the ammeters, or
equivalent current-measuring devices, can be inserted at section
junctions, without disturbing adjacent leaks. Moreover, series
loading coils at junctions can much more easily be inserted ex-
perimentally in T lines than in II lines. On the other hand, the
terminal sections of a T line call for half reactors. It is often
inconvenient to supply terminal reactors of half the usual section
reactance, or to find the correct mid-points of the section reac-
tances. It is ordinarily preferable to make all the line reactors
similar, and equal, without mid-point, taps. Two section reac-
tors may be used in parallel to form cach terminal semi-reactance,
but this is wasteful of material. It is easier in such cases to
employ II sections, with full reactors throughout, and semi-leaks
at the terminals. Each of these two types of artificial line has,
therefore, its particular advantages and disadvantages, and the
selection between them will depend on the merits of each case.

196
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Line Reactors.—The line reactors should be as simple to con-
struct as possible. They should be capable of being adjusted
into close mutual agreement. They should be so mounted that
the mutual inductance between adjacent reactors should be
negligible. They should be easily insulated from ground, and
should be impregnated with a waterproof insulating compound
80 as to maintain good internal insulation. Finally, they should
be solidly constructed so that their electrical constants may re-
main unaltered with time.

A question, which naturally arises early in the design, is
whether the reactors should be ferric or non-ferric; i.e., whether
they should have, or should not have, subdivided iron cores. The
advantage of iron cores is that they enable the needed amount
of reactance to be obtained with cheaper, smaller, more compact
and less mutually reactive toroids, than if wooden or air cores
are used; so that the whole artificial line can be compressed into
a relatively small compass. On the other hand, the disadvantage
of iron cores is that the electrical constants of their coils vary
appreciably, not only with the frequency, but also with the
strength of exciting alternating current, at one and the same
frequency.

If, therefore, an artificial line with reactors is needed for first
approximation purposes only, and especially if it is required to
be semi-portable, laminated steel cores should be used, preferably
in toroid coils. If, however, the line is needed for quantitative
purposes, and especially for careful study in the laboratory, non-
ferric reactors should be selected. Up to the present time, arti-
ficial lines used industrially, for practical checks, commonly use
ferric reactors, and artificial lines in the testing laboratories of
technical colleges ordinarily employ non-ferric reactors.

Non-ferric reactors for artificial lines have been constructed in
three forms, namely: (1) toroids with wooden ring cores; (2)
square wooden frames intended roughly to simulate closed circu-
lar solenoids; and (3) toroidal coils of wire wound on forms and
assembled in air, so as to approximate closed circular solenoids.

The first type is described by Mr. G. M. B. Shepherd.* “They
are wooden-core toroids of nearly the same dimensions as the
loading coils commonly used for underground cables.” There

* ¢ An Artificial Equivalent of an Open-wire Line for Telephonic Experi-
ments,”’ by G. M. B. SHEPHERD, The Post Office Electrical Engineers’ Journal,
vol. vii, part 3, October, 1914.
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are two windings on opposite halves of the ring, the middle point
of each being brought out and connected to the capacity as shown
in Fig. 106. This figure shows a two-wire artificial line in I sec-
tions, each representing 8 miles (12.9 km.) of overhead telephone
copper pair conductor, except two sections of 4 miles each (6.4
km.). The loop resistance is 72 ohms per section, the loop in-
ductance is 0.0296 henry per section, the loop capacitance 0.08 4.
per section, and the loop leakance adjustable in three steps be-
tween 8 and 80 micromhos per section. There are altogether
26 sections, representing in all 200 miles (322 km.) of aerial loop
pair. This line is made up in two wooden-frame cases, each
about 37 in. by 7 in. by 10 in. high (94 cm. by 17.8 em. by 254
cm. high).

;(-—-—C miles —'—>:“‘Tl<—‘—8 miles r%

F1a. 106.—Artificial telephone line in I sections, with adjustable section
resistances and leakances.

The second type is described* in the Electrical World of Feb. 17
1912. It consists of a four-section square wooden frame, such as
is indicated in Fig. 107. Each coil is separately wound in the
lathe, with double cotton-covered copper wire, and then thor-
oughly impregnated with paraffin wax. The ends of each coil
are soldered to small brass terminal plates, and the direction of
winding is such as to imitate that of a closed circular solenoid.
The wooden cores are assembled into square frame reactors by a
single brass screw bolt S, at each corner. Such a frame reactor
possesses an appreciable amount of external magnetic leakage;
so that it is desirable to screw them down to the supporting shelf

* “An Artificial Power-transmission Line,” by A. E. KENNELLY and H.
Tasoss1, Electrical World, Feb. 17, 1912. See also ‘“Measurements of
Voltage and Current over a Long Artificial Power-transmission Line at 25

and 60 Cycles per Second,” by A. E. KENNELLY and F. W. LIEBERKNECHT,
Trans. A. 1. E. E,, June, 1912. :
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alternately in perpendicular planes as is suggested in Figs. 108
and 109. The particular frame reactor of Fig. 107 weighs, un-
wound, 2.8 kg. (6.21b.). The insulated wire on the frame weighs
5.6 kg. (124 1b.). Each of the four component coils is wound
with 1,190 turns of d.c.c. No. 19 A.W.G. wire, of bare diameter
0.915 mm. (0.036 in.), and of mean covered diameter 1.14 mm.
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Fi16. 107.—Outline sketch of one coil. Dimensions in millimeters.

(0.045 in.) occupying approximately seven layers of 170 turns
each. The total inductance of each frame reactor averages 90
millihenrys. The total resistance of each frame reactor at 20°C.
averages 24.1 ohms.

In the particular IT line into which these frame reactors enter,
there are 30 reactors in all. Each section approximately repre-

l DN l l 1, ] - l T 5 ] K - 3 B
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PLAN SIDE ELEVATION
Fi1Gs. 108 aND 109.—Plan and side (ﬂerfntion of the grouping of reactors on
shell.
sents 80 km. (49.7 miles) of No. 000 A.W.G. aluminum stranded
three-phase conductor of gverstrand diameter 1.195 cm. (0.47
in.), suspended parallel in air, at equal interaxial distances of 230
cm. (90.5in.). The total length of the artificial line is therefore
2,400 km. (nearly 1,500 miles) if connected single-phase, as in
Fig. 110, or 800 km. (nearly 500 miles) if connected three-phase,
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as in Figs. 111 and 112. The line is mounted on three shelve:.
as shown in Fig. 113. For many purposes. a much shorter ani-
ficial line would suffice.

Fi1G. 112.—Diagram of connections of artificial line.

The condensers are of leadfoil and impregnated paper, of the
tyvpe emploved in telephony. Each section condenser averages
0.75 uf. The six terminal condensers of Fig. 112 are each of
0.375 uf. Each condenser is placed in a separate tin box, 20 cm.
by 5.6 cm. by 14.2 em. high 7.9 by 2.2 by 5.6 in.), which is then
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filled up with paraffin wax. They are tested initially to with-
stand 500 volts a.c. They have a small dielectric leakance at a
low frequency, which, if fairly uniform, measured, and taken into
account, is no practical disadvantage.

The total weight of insulated copper wire in the entire 30-frame
line is 168 kg. (370 1b.), and the total capacitance 22.5 uf.

The constants of the conjugate smooth line at low frequencies,
not exceeding 60~, are given in the accompanying table.*

Fi1a. 113.—Picture of artificial line in cabinet.

TasLe XII
Nominal Linear Constants of Artificial 85 sq. mm. (168,000 circ. mils)
Aluminum Line, taking each Section as representing
80 km. (49.7 miles) of conductor

Per wire km. Per wire mile
Linear resistance r ohmsat 0°C...... .. 0.278 0.445
Linear resistance r ohms at 20°C... .. .. : 0.301 0.485
Linear inductance lhenrys............ 1.13 X 10°* = 1.82 X 103
Linear capacitance c farads............ - 9.38 X 107? 15.1 X 10~*
Linear leakance g mhos...............- 0.12 X 10-¢ 0.19 X 10-¢

Linear hyperbolic angle hyps. at 60~.. 0.00135471°.5 0.00218471° 5

* Tests of one of the reactors, removed from the line, at different impressed
frequencies, have shown that its effective resistance at 28°C. was 25.3 ohms
at zero frequency, 26.8 ohms at 1,000~, 31.5 ohms at 2,000~ and 335.5
ohms at 2,500~.
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The angle 6 subtended by each section at 60~.is 0.108£71°3
hyp. The angle v subtended by each half-section at 60~ is
0.054£71°.5 hyp. The lumpiness correction factor, at 60~, is
1.0007X0°.03; so that there is practically no correction for lumpi-
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F1a. 114.—Single coil and wooden core of square-frame reactor.

ness at this frequency. The total angle subtended by the whole

single-phase line of 30 sections, at 60 ~, is 3.24471°.5 hyps.
This type of artificial power-transmission line has been found

convenient for experimental investigations at low frequencies.

Fic. 115.—Reactor frame.

It has been found practicable to insert a small manganin wire
resistor in circuit with each reactor when it is desired. to have the
line approximately imitate a telephone overhead copper line
say 3.65 mm. (0.144 in.) in diameter. The line is then, however,
not well adapted for use with telephonic frequencies, because of
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the large lumpiness correction factor, and for telephonic measure-
ments, a similar line has been constructed with smaller and more
numerous frame reactors and sections.

The dimensions of the frame in this higher-frequency line are
indicated in Figs. 114 and 115. The winding consists of No. 24
A W.G,, d.c.c. copper wire, diameter bare 0.51 mm. (0.020 in.),
covered 0.76 mm. (0.03 in.). Each of the four limbs composing
the frame carries 975 turns, in approximately 731 layers of 125
turns per layer. The mean diameter of the winding is 32.5 mm.
(1.27 in.), and the length of wire on each limb is 100 m. (328 ft.).
The total length per frame is thus 400 m. (1,310 ft.), with a total
frame resistance of 33.0 ohms at 20°C., and a total frame
inductance of 0.031 henry. The weight of wire on each frame
is approximately 0.735 kg. (1.62 1b.).

There are 80 frame reactors and sections in the line, making
the total weight of wire 58.8 kg. (130 1b.). The total line resist-
ance of the 80 reactors is 2,640 ohms at 20°C., and their total
inductance 2.48 henrys. They are connected as a IT line. The
reactors are arranged alternately in mutually perpendicular up-
right planes, as in Figs. 108 and 109. The line occupies two
shelves of a pair of cabinets which, in combination, are 6.75 m.
(22 ft. 2 in.) long, 45.7 cm. wide (18 in.) and 88 cm. (34.5 in.)
high. These cabinets are provided in front with sliding glazed
doors. They are shown on the upper right-hand side in Fig. 118.

The condensers are selected telephone condensers of leadfoil
and paper, tested up to 500 volts, a.c., r.m.s. The average
capacitance of each condenser is 0.325 uf., making the aggregate
capacitance of the 80 sections, 26 uf. Each section is intended
to represent 30 km. (18.7 miles) of heavy long-distance aerial
telephone wire. '

TasLe XIII

Nominal Linear Constants of Artificial Line for 15.67 sq. mm. (30,000 circ.
mils) copper aerial conductor at interaxial distance of 30 cm.
from its parallel return conductor, each section being
taken as representing 30 km. (18.7 miles) of wire

| Per wire km. Per wire mile
Linear resistance r ohms at 0°C..... ... ! 1.013 ' 1.63
Linear resistancde r ohms at 20°C.......: 1.1 ' 1.77
Linear inductance ! henrys............, 1.03 X 107% ' 1.66 X 103
Linear capacitance ¢ farads............ 10.8 X 10~* : 17.4 X 10—*

Linear leakance gmhos............... 1.2 X107 - 1.93 X107*
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The conjugate smooth line is 2,400 km. (1,490 miles) of aerial
copper conductor, one of a pair of parallel copper wires 0.447 cm.
in diameter (0.176 in.) at an interaxial distance of 30 cm. (118
in.). The cross-section of such a wire would be 15.67 sq. mm
(0.0243 sq. in. or 30,900 circ. mils) between the sizes of Nes.3
and 6 A.W.G.

The data concerning the conjugate smooth line, at low fre
quencies appears in the preceding table.

i
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F1e. 116.—Non-ferric reactor for artificial power transmission line. Plan
view. Wooden wedge-shaped spacing pieces between coils.

The third type of non-ferric reactor is described by R. D. Hux- -
ley,* and by Prof. C. E. Magnusson.t In each case, there are
wooden-cored or air-cored coils of insulated wire mounted on a
base, in such a manner as to approximate the structure and be-
havior of a closed circular solenoid, or toroid.

*R. D. Hexrey, “Design for Artificial Transmission Line,” Electrical
World, May 2, 1914, p. 980.

t C. E. MaGNussoN, J. GoopErRHAM and R. RADER, “ A 200-mile Artificial
Transmission Line,”’ Electrical World, June 22, 1915. See also ‘‘ An Artificial
Transmission Line with Adjustable Line Constants,” by C. E. MAGNUSsg0N,
and S. R. BurBank, Trans. A. 1. E. E,, September, 1916.
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In the Pender and Huxley design, there are eight coils in an
octagonal reactor group, as shown in plan by Fig. 116. Each
coil is wound in the lathe on a wooden form. The axial length
is 2.5 cm., the internal winding diameter 5.75 cm., the external
winding diameter about 16.0 cm. or the winding depth 5.13 em.

Fis. 117.—Supporting base of reactor and mode of assembling coils.

in 23 layers of about 10 turns each, or 230 turns in all, per coil
of No. 12 A.W.G. double cotton-covered copper wire 0.0808 in.
(2.05 mm.) bare, 0.092 in. (2.35 mm.) covered diameter. The
weight of wire in each reactor group of ecight coils is approxi-
mately 43 lb. (19.5 kg.). The d.c. resistance of each reactor
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group at 20°C. averages 3.39 ohms. Its average inductance at
low frequencies is 0.056 henry.

As each coil was completed, it was transferred from the lathe
to an oven, where it was dried for several hours. It was then
thoroughly impregnated in a bath of molten beeswax and rosin.

The coils, painted with paraffin wax, are mounted by setting
them in channel holes cut out in a wooden base, as indicated in
Fig. 117, and the connections between coils are soldered together.

The capacitance per section is 0.485 uf. in paper condensers of
the telephone type, sealed in tinned iron cases and individually

F1a. 118.—Picture of cabinets containing artificial lines.

designed to withstand 2,000 volts. At 60~, the condenser phase-
angle defect was less than 15 minutes of arc. These condensers
were speeially selected for uniformity.

Each section of the artificial line represents approximately 30
miles (48.25 km.) of aerial power-transmission copper conductor
of 500,000 circ. mils (253 sq. mm.) cross-scction, spaced at equal
interaxial distances of 9 ft. (275 em.). The entire line of 26 I
sections thus represents 780 miles (1,250 km.) of single-phase
conductor. The total weight of insulated wire is about 1,100 Ib.
(500 kg.). The sections are mounted in racks five shelves deep
in two cabinets, each capable of holding 15 sections. Each cabi-
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net measures approximately 185 e¢m. by 61 cm. by 167.5 cm.
high, with a floor space of 1.1 sq. m. The appearance of the line
is shown in Fig. 118, on the left-hand side of the picture.

The linear constants of the conjugate smooth line at low fre-
quencies are given in the following table.

TasLE X1V

Nominal Linear Constants of 250 sq. mm. (500,000 circ. mils) copper artifi-
((:ial plczwe;-transmission Line taking each section as representing 30 miles
48.3 km.

Per wire km. Per wire mile
Linear resistance r ohms at 20°C. .. ... 0.0702 0.113
Linear inductance  henrys............| 1.16 X 10~ 1.87 X 1073
Linear capacitance ¢ farads............ 1.004 X 10— 1.617 X 10
Linear leakance g mhos............... 0.013 X 10~ | 0.021 X 10~*
Linear hyperbolic angle « hyps. at
1804~ . o i 0.04074£88°.2 | 0.0655£88°.2

No lumpiness correction factor has to be applied on this line, in
practice, below 200~. The section angle at 189.4~ is 0.1964£
88°.2 hyp. (see page 289). At 189.4~, the lumpiness correcting
factor is 1.002X0°.01.

This line is relatively heavy to construct, but is very well
adapted to manifest a.c. and transient phenomena, owing to its
relatively very low linear resistance, and its small section angle.

The University of Washington design of non-ferric section re-
actor employs four hollow coils arranged in a square, as shown in
Fig. 119, on a wooden supporting back. These four fixed coils
are so connected, with one of them subdivided, that different
values of inductance can be included between the pairs of termi-
nals selected. Moreover, one of the coils can be rotated ad-
justably in azimuth, to change the mutual inductance. The sec-
tion inductance can thus be varied between 0.01 and 0.021 henry.
The section line resistance can also be varied within certain limits
by means of the loop of resistance wire. An extra section resist-
ance of 50 ohms can be inserted in each section when telephone
wires are imitated.

The coils are wound with d.c. No. 14 A. W. Gage, 0.072 in.
(1.83 mm.) bare, 0.081 in. (2.06 mm.) covered diameter. -Their
axial length is given as 5.47 cm., internal diameter 4.8 cm. }ex-
ternal diameter 6.3 cmn., 76.3 m. of wire in 216 turns—eight layers
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of 27 turns each. The average reactor resistance is 2.59 ohms
at 25°C. The section capacitance is adjustable between 0.092
and 0.92 uf. .

Each T section is designed to imitate 10 miles (16.1 km.) of
aerial line of almost any practical size of copper wire up to No.
0000 A.W.G., diameter, 0.46 in. (11.6 mm.) or 211,600 circ. mils
(107 sq. mm.), at interaxial spacings up to 10 ft. (3.05 m.).

Fic. 119.—Section of University of Washington T line.

There are 20 sections in the artificial 7' line as described, aggre-
gating a length of 200 miles (322 km.) of aerial line.

The construction described offers the advantage of enabling
different sizes and types of overhead line to be tested on different
occasions. ~Such advantage is accompanied by a corresponding
need for increased care in ascertaining that all the section ad-
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tents are similar, and that all the screw terminal contacts
in good electrical condition.

“he short equivalent length of the section in this line enables
1er a relatively high audio frequency to be used on it, or assists
;he study of transient phenomena.

F1G. 120.—Assembled artificial line.

\ picture of the line of 20 scctions, as given in the Electri-
World article appears in Fig. 120.

reneral Remarks Concerning Artificial-line Connections.—In
iblishing the connections of an artificial line, it is important
1ave as few and firm electric contacts as possible, and to pro-

Fic. 121.—Convenient form of plug contact piece.

e convenient means for testing the continuity and uniformity

:he sections. A particular form of plug contact piece having

1e advantages for connecting consecutive II sections, is shown

Tig. 121. The condenser is connected to the brass split plug,

capable of being tightly inserted in the piece and of being
14
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speesiiny removed. By throwing off all the eondenser plugs. s

Whensatonernridige et of the line eireuit. or of any part thersi,
can i spedily made.  The open-eireuiting plug O. permanently
shor—irenited by the removable brass strip S. enables the lire
10 b opened conveniently at that point. or permits the insertion
of a «mall re<istance in the line. for measuring line current by
potentioeter.

One of the most important requirements of any artificial line
is obviously uniformity among the sections. It is usually more
important that they should be all alike. even if they are somewhat
off standard. than that some should approach the standard elec-
trie eonditions very closely while others depart appreciably there-
from. It is very disconcerting to observers and computers to
find certain sections too far off the average. If electrieal dis-
erepancies exist. it is usually better to place them near the motor
end of the line. and to have the highest available degree of uni-
formity in the generator-end sections, where the fall of potential
and current is greatest.

It is found advantageous to insulate elaborately all parts of
the line circuit. and to ground carefully the ground side. For
some purposes it is insufficient to employ the ground side as a
mere return conductor. and actual grounding to water pipes is
to be preferred as a general practice.

T and 1T Artificial Lines of Double Surge Impedance.—We
have seen that T and 11 artificial lines are single-wire lines with
ground or zero-potential return. Consequently, when an actusl
two-wire line circuit is imitated by a T or II artificial line. the
latter should be operated with half the e.m.f. applicable to the
two-wire line at the generator end. and with half the impedance
load at the motor end, as is indicated in Figs. 15 and 16. In some
practical cases, there may be difficulty in testing the artificial
line with half the voltage and half the load that should be applied
to a double-wire model. i.e.. an artificial line of I or O sections
(Fig. 89). This objection may be overcome in a T or IT line by
employing sections of double surge impedance.

In Fig. 122, a single-section I artificial line is indicated at 4B
AB, with 20 volts applied across the two sides at A, and a 2,000-
ohm load across the two sides at B. This line nominally repre-
sents a single mile (1.6 km.) of standard telephone twisted-pair
cable, having a capacitance of 0.08 mf. and a total conductor
resistance of 88 ohms, half in each conductor. At w = 5,000,
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the angle subtended by this I line is 0.0839£45° hyp., uncorrected
for lumpiness, and the uncorrected surge impedance is zor =
1,048.8X45° ohms at this frequency.

The nominal T section corresponding to this line is shown at
A’B’. 1t has 44 ohms conductor resistance and 0.16 mf. capaci-
tance to ground return. It should be operated with 10 volts at
A’ and with 1,000 ohms at B’, in order to develop the same dis-

O'Vjcu"n""awlih)‘ll 6= \/Jcrw‘o-m&j 0=\/ie\ 7w = 0.0 ICY
Zor V7o = 1088 (6 Q2 zo= Vi =R 2= /igly = 100880

n

A2g 2Q B A 20 20 B’ A'40 MO B”
X | [ bt Y
2 0.16x10°f &3 :
S
v T » Jomxw*s

Q

AAAAAAAAAAAAA
VWWWWWWWAs-

A 20 20 B
F1a. 122.—1 section and T section, with a T of double surge inpedance.

tribution of position angles, potential and current as the I line
at AB. The nominal angle subtended by the T section A’B’ is
the same'as that of the I section (0.0839445° hyps.); but its surge
impedance is only half that of the I section.

If, however, the T section be given the same total conductor
resistance as the I section (88 ohms) as at A”’B”, Fig. 122, with

4

E—
S——
e — =

LA N B 1
F1a. 123.—Elementary-connection diagram of a railway-track signal system.

the same capacitance as the I section, we obtain a T of the same
section angle as before; but with double surge impedance. This
T section may now be operated with full voltage at A’ and full
impedance at B’’, in order to develop the same distribution of
position angles, potentials and currents as the I section. The
correcting factors for lumpiness will also be the same for all three
types of equivalent circuit. Moreover, the equivalent II can be
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similarly produced for double surge impedance by keeping the
same leaks as in the O section, but putting all of the conductor
impedance into one line, and using the other as a ground
return.

From an examination of the foregoing conditions, we are led
to infer that 7n any two-wire artificial-line section, either of the
I or O variety, no change is made, either in its angle or in its surge
impedance, by changing the proportions of conductor impedance be-
tween the two sides. As an extreme case, all of the line impedance
can be collected in one side (as at A”’B”’, Fig. 122), in which case
the section becomes a T or IT section of double surge impedance.

Alternating-current Track-signaling Circuits.—Many steam
railroads employ automatic block-signal systems, in which the
bonded track rails form the operating conductors. A very
simple set of connections in such a system is indicated in Fig. 123.
An a.c. transformer T, at position A, supplies say 8 volts, at
25~, to the rails of the track AB, through the current-limiting
resistance, 7. The rails are electrically disconnected at the in-
sulating points I, II. A track relay R, at the distant end B
of the section, is arranged to be operated by the alternating
current from A, unless a train N, at any position between A and
B, establishes a short-circuit between the rails. As soon as the
train clears the section, the relay R will become reénergized.

The two rails of the track, if properly and uniformly bonded at
joints, form the two conductors of a two-wire circuit, with an
impressed e.m.f. at 4, and a permanent load at B. The leakage
across the track due to moisture in the ties and ballast, will tend
to develop a uniformly distributed leakance, the linear value of
which will depend upon the chemical and mechanical conditions
of the track, and also on the weather. It is reported, as the re-
sult of many electrical observations on a variety of lengths and
locations of track, that this lincar leakance, at any one locality
and time, is substantially uniform and uniformly distributed; so
that this distributed leakance obeys Ohm'’s law sufficiently nearly
toadmit of being treated asuniform, in the engineering application
of the hyperbolic theory.

The linear impedance of the track rails will depend upon their
size and shape, the conductivity and permeability* of the steel at

* “ Experimental Researches on the Skin Effect in Steel Rails,” by A. E.
KenNeLLy, F. H. Acuarp and AL 8. Daxa, Journal of the Franklin Institule,
August, 1916, pp. 135-189.
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the working temperature, on the impressed frequency, the cur-
rent strength, and on the nature of the bonding. Tables of linear
impedance* for different sizes of rails and different kinds of bond-
ing have been prepared by Railway Signal Engineers. Its size
is estimated to vary between 0.3 and 1.5 ohms per track km.
(0.1 and 0.5 ohm per track 1,000 ft.), and its slope between 12°
and 66°. The linear leakance may also vary between 0.15 and
1.2 mhos per track km. (0.05 and 0.4 mho per track 1,000 ft.),
according to the nature of the ballast, and the wetness of the
same. This linear leakance is relatively so large that the ca-
pacity susceptance is ordinarily negligible.

In preparing an artificial line to represent a signal circuit of
given length and track conditions, the linear resistance would be
taken from tables, for the rail size and character of bonding, as
well as for the impressed frequency of the signaling current. The
linear leakance would naturally be selected at a reasonable maxi-
mum valuet likely to be met with under the worst prevailing
weather conditions. If the signaling apparatus worked with
an ample margin of safety in the laboratory on such an arti-
ficial line, it might be expected to work satisfactorily over the
corresponding actual track circuit under all normal operating
conditions, all defective rail bonds having been removed.

A particular 1-km. section of track is indicated at AB in Fig.
124. Here the linear impedance is taken as z.. = 1.18/22°.2
ohms per track km. (0.36£22°.2 ohm per track 1,000 ft.) and
y,, = 0.563£0° mho per track km. (0.172£0° mho per track 1,000
ft.). These conditions lead to 6 = 0.815£11°.1 hyp. per km.
and z,,, = 0.725411.°1 ohm, or y,,, = 1.380X11°.1 mhos.

The correcting factors for the equivalent circuits of this length
of track are indicated in Fig. 124. The larger is 1.106£2°.3.
For shorter lengths of track, these correcting factors would be
nearer to unity. For lengths of 0.25 km. or less, the nominal
Ts and I1s would be substantially equivalent T's and IIs.

The equivalent I section for 1 km. is indicated at A’B’.  Each
line wire has 0.562421°.1 ohm, and the central leak has 1.608<2°.3

¢ ¢ Alternating-current Signaling,” by HaroLp McCRreapY, Union
Switch and Signal Co., Swissvale, Pa., 1915, p. 440.

‘“Electric Interlocking,” by the Engineering Staff of the General Rdilway
Signal Co., Rochester, N. Y., 1915.

t Technological Papers of the Burcan of Standards, No. 75, ** Data on Elec-
tric Railway Track Leakage,”” by G. H. AnLBORN, August, 1916.
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ohms. The equivalent T is found on either side of the neutral
line NN'.

The equivalent O section is shown at A”’B”’. It has 0.653/
24°.5 ohm on each side, and 3.81£1°.1 ohms in each leak. On
cach side of the neutral line NN is an equivalent IT.

L=1km.

6= 0.816 /111 hyp.
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Fi1G. 124.—Diagrams of a particular 1-km. track section and its equivalent
circuits,

At a’b’ is the equivalent T with double surge resistance, and
at a”b” is the corresponding equivalent II with double surge
resistance.

By making up a set of such similar equivalent sections for
various lengths of track, say three of 1 km., two of 0.5 km., two
of 0.25 km., and two of 0.125 km., it would be readily possible
to conneet up an artificial track line of any desired length from
0.125 km. up to 4.75 km. On this artificial line, any specific
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piece of apparatus such as a track relay might be tested under
conditions resembling those occurring in actual operation.*
Fig. 125 shows an artificial track circuit for connecting various
lengths of line with suitable e.m.f. and auxiliary devices, on a
pair of switchboards, as used by the General Railway Signal Co.
Artificial Telephone Lines.—Fig. 126 shows a convenient .and
portable form of artificial twisted-pair standard telephone cable
as constructed by the Western Electric Co. for comparative tests,
either electrical or auditory, on actual operating telephone cir-

F1a. 125.—Artificial track circuit used by the General Railway Signal Co,

cuits. The approximate inside dimensions of the box are 35.5
cm. by 19 em. by 14 cm. deep (14 in. by 7.5 in. by 5.5 in. deep).
The electrical connections are indicated in Fig. 127. The box
contains 32 miles (51.5 km.) of artificial cable in I sections of 16,
8,4,2,1,and 1 miles. Each 1-mile section has 88 ohms conduc-
tor resistance and 0.08 uf. intercapacitance, as at AB, Fig. 122.
These sections are connected each to a quadruple group of bind-
ing posts along the central line. A pair of throw-over double-
blade switches are also connected to each section, in such a man-

* L. V. LEwis, The Signal Engineer, July, 1911. “ Analytic Method of
Solving Track Circuit Problems,’’ by C. F. Estwick, Journal of the Railway
Signal Association, May, 1916, 21st year, No. 2, pp. 348-362.
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ner that when AA and BB are made the main terminals of the
line, each pair of switches brings in a section when thrown in-

F1G. 126.—32-mile artificial twisted-pair standard telephone cable.

Firs. 1264.—Western Electric Company's artificial aerial telephone line

ward, and cuts it out of circuit when thrown outward. Ascon
nected in Fig. 127, there is one section of 2 miles (3.2 km.) lef
inserted in the line. By selecting the proper combination o



DESIGN AND CONSTRUCTION 217

switches, any integral number of miles of standard cable between
1 and 32 inclusive can be connected in circuit.

)
© O © O OO0

Binding

OO0 OO OO0 G0 00 O

OOO 00 00 00 00 OOO

CO 00 o0 OO OO0

FiG. 127.—Connection-diagram of Western Electric artificial telephone line.

A larger Western Electric Co.’s artificial telephone line box is
illustrated in Fig. 126A. It contains I sections of artificial No.

Fi1a. 128.—Box of artificial line for submarine telegraph eable, containing
distributed resistance and capacitance.

12 N.B.S. gage, diameter 0.104 in. (2.64 mm.) acrial open two-
wire line of the following constants, r,, = 10.4 ohms; loop mile
(6.46 ohms,loop km.), !,, = 3.67 millihenrys/loop mile (2.28
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millihenrys/loop km.), and ¢,, = 8.35 muf./loop mile (5.19 mu.
/loop km.).* The plan of connection by switches is the same as
in the box of Fig. 126. By means of these switches, any length
between 10 miles (16 km.) and 600 miles (966 km.) of two-wire
line may be inserted by 10-mile steps.

Artificial Submarine Cables.—A box of smooth artificial line
containing resistance and associated distributed capacitance for
a particular type of submarine cable is represented in Fig. 128.
The box contains the equivalent of about 60 nauts. of ordinary
cable (112 km.). The distributive association of resistance and
capacitance in such a box has already been described in Chapter L.

* muf is a symbol for millimicrofarad or 10-* farad.



CHAPTER XIII
TESTS OF ALTERNATING-CURRENT ARTIFICIAL LINES

Steady-state tests of artificial lines are ordinarily of three kinds,
namely: (1) Tests of plane-vector impedance or admittance; (2)
tests of plane-vector potential; (3) tests of plane-vector current.
These tests may need to be made at any point along the line, and
especially at any section junction.

Impedance Tests.—Impedance or admittance tests are ordi-
narily one of two types: (1) Bridge tests by some null method;

Fic. 129. Fic. 130.

Fia. 129.—Rayleigh bridge.
F1a. 130.—Modified Rayleigh bridge for measurement of one of a series
of nearly uniform impedances in terms of a fixed inductance standard.

and (2) equality of potential-difference tests, by electrostatic
voltmeter.

Bridge Balances.—In order to measure the vector impedance
.or admittance of an a.c. line, it is necessary to obtain a bridge
balance with both resistance and reactance. One method of such
measurement employs the Rayleigh bridge, which has an adjust-
ably variable inductance L in that arm of the quadrilateral (Fig.
129) which equilibrates the line to be measured. When the line
is condensively reactive, an adjustable capacitance C may be used
instead of an adjustable inductance. The balance is noted either

219
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on a vibration galvanometer, tuned to the measured frequency d
the testing alternating e.m.f., or on a pair of head telephone
" substituted for the galvanometer. In case a variable inductance
standard is not available, a fixed standard inductance may be
employed of the same order of magnitude as that to be measured
In that case (Fig. 130), the ratio arms A and B must be so al:

R L

E,

Static
Voltmeter

F1g. 131.—Connections for sending-end impedance measurement.

justed for balance with the aid of a rheostat R, that their ratio
corresponds both to the resistances and inductances of the arms
bd and cd. This dual ratio is sometimes tedious to attain.
Tests of Equality of Potential Difference.—Fig. 131 indicates
a method of measuring line impedance when a bridge balance or
equivalent null method is unavailable, and when a suitable elec-
trostatic voltmeter is at hand.
The a.c. testing source E; of
carefully measured and con-
trolled frequency, is impressed
upon the artificial line to be
tested, through the non-induc-
tive adjustable resistance R.
The electrostatic voltmeter is
connected alternately to read
the voltage drop in the resis-
tance R, and in the line to
ground. The resistance R must then be adjusted, by successive
trials, until these two readings are equal. This means that the
size of the line impedance is equal to the numerical value of the
resistance R, in ohms. By repeating the observations many
times, this adjustment can be made with considerable precision.
After equality has been obtained, the two voltmeter readings are

FiG. 132.—Graphic method of deter-
mining the line impedance.
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recorded, and the reading from the generator to ground is noted.
This reading, the voltmeter connections for which are indicated
in Fig. 131, corresponds to the total drop in line L and resistance
R together.

From the calibration curve of the voltmeter, the three voltage
drops or potential differences E;, E., and Eg, are found. The
former represents the size of the total p.d. The other two -have
been made equal by adjustment, and represent the sizes of the
line p.d. and resistance p.d. In Fig. 132, let OG be drawn to
scale to represent Eg, and likewise OA and GA, to represent Ep
and E,. Then, since the same a.c. produces all three p.ds., the
diagram may be regarded as an impedance diagram to a suitable
scale, as well as a voltage diagram. The impedance scale must
be such that if the length of OA be taken numerically equal to

R a R &
8 28

Z, z) x
7

Zg

R a R‘ b ,I
F1o. 133.—Indeterminate alternative vector diagrams obtainable from line-
impedance measurements conducted as in Fig. 131.

the adjusted resistance R at equality, E, will represent the im-
pedance offered by the line, both in size and slope.

The line impedance, whose size is R, will now have a slope of
28°, where 8° is the angle AOG.

In practice, it is not necessary to draw the diagram, because

evidently
cos B° = 2%3 numeric (397)

Knowing E; and Eg, 8° may be immediately obtained from
tables of circular functions.

Strictly speaking, the method is open to ambiguity in interpre-
tation; because the line impedance may be either R48°, or R<8°,
as is shown by Fig. 133. The uncertainty may be overcome,
either by preliminary rough computation, as to whether the line
is inductive or condensive; or else a definite increment of react-
ance, such as a suitable reactor or condenser, should be added
to the testing end of the line, and the test repeated. Knowing
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the sign and approximate magnitude of the reactance increment,
the interpretation of the sign of the slope 8° should thus be
reduced to certainty.

The precision of the test in regard to the slope 8° is ususlly
distinetly less than in regard to the size R, because of the effert
a small error in voltmeter reading or in the voltmeter calibration
may have in (397). ‘

Potential Tests.—There are two types of tests for measuring
the potential along the line, namely: (1) a.c. potentiometer tests;
and (2) electrostatic voltmeter tests.

The Drysdale-Tinsley c.c. and a.c. potentiometer measures
both the size and the slope of the a.c. potential applied to its
test terminals. A view of the instrument is presented in Fig

F16. 134.—Drysdale-Tinsley a.c. and c.c. potentiometer.

134, and a simplified diagram of the principal connections appears
in Fig. 135. In the latter, the a.c. mains MM, M’M’, supply
both the testing transformer T', for energizing the artificial line
AB, and the split-phase rotary-field transformer T, for deliver-
ing any desired phase of e.m.f. in the secondary circuit to the
slide wire of the potentiometer. The phase-splitting is accom-
plished by means of the adjustable rheostat r, and condenser C.
The values of resistance and capacitance, at r and C, necessary
for splitting the phase, vary with the impressed frequency, and
have to be adjusted by trial, at the frequency of the test, until
the e.m.f. in the secondary circuit of T: has the same size at all
positions of the secondary coil, which is capable of being moved
around the circle by means of the handle L (Fig. 134).

The potentiometer is first calibrated for continuous currents,




TESTS OF ARTIFICIAL LINES 223

by throwing the change-over switch H to the points pq. This
permits the working e.m.f. E of 8 volts to flow through the slide
wire WW, dynamometer milliammeter D, and the controlling
rheostat R. When the standard Weston cell S has established
zero balance at 1.018 volts on the slide wire, with the aid of the
c.c. galvanometer g, the milliammeter D should indicate pre-
cisely 50 milliamp. on its scale. With this adjustment, the instru-
ment can be used to measure c.c. potentials, up to 1.8 volts, in
the usual way.

\ ’e

ml};l?l':l # D

i :ﬂ I
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Mi<——————— - 100 Volts g.c————————=—-- >’
F1c. 135.—Simplified connections of a.c.-c.c. potentiometer.

If the change-over switch H is then thrown over to the points
mn, an a.c. potential difference of 8.0 volts, and adjustably con-
trollable phase, is supplied to the slide wire, from transformer T,
through dynamometer milliammmeter D, and rheostat R. The
latter must be so adjusted as to bring the pointer of D exactly
back to 50 milliamp.

The slide wire will then carry just the right current to indicate
correctly in r.m.s. volts. If now we connect any a.c. potential
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difference less than 1.8 volts, such as that between junction 4 and
ground, to the slide wire, through a tuned vibration galvanometer
G, the latter can show zero current only when the size and slope
of the slide-wire potential and junction-4 potential are respect-
ively equal. The zero-current indication of G must, therefore,
be reached by successive adjustment of the size and slope of slide
wire potential. The size can manifestly be adjusted by sliding
the contact pointer P along the wire WW, and by the usual drop
rheostats dd. The slope can be independently adjusted, by
rotating the secondary winding of the rotary-field transformer
T, under the control of handle L. The tuned vibration galvs-
nometer G will show zero current when both the slide reading and
the phase reading are conjointly in proper adjustment. Reduc-
tion to zero reading must, therefore, be effected in alternate steps
on the slide and on the phase shifter. The potential difference:
are thus read of the type EZB° or EXB°, the phase being taken
with respect to that of the impressed 100 volts single-phase e.m..
at the split-phaser, within the range 0 — 1.8 volts in E, and
+ 180° in 8°.

The precision of the instrument,* with some practice, is con-
siderable, although not up to that obtainable when it is used for
d.c. measurements, because the calibration of the slide wire is
determined by the full-scale deflection of the milliammeter A,
instead of by a null method.

A convenient form of vibration galvanometer for use with the
instrument, when the frequency is between about 20~ and 100~
is shown in Figs. 136 and 137. Alternating current in the coil
C impresses a cofrequent vibromotive torque on the suspended
magnet ns. The galvanometer is casily tuned, by sliding a
magnetic shunt S over the poles of the controlling permanent
magnet M, under the control of the projecting screw shaft Sc.
The c.c. resistance of the coil C is ordinarily 40 ohms, and the
sensibility of the instrument, at 50~, is about 4 mm. per
microamp. at 1 m.

The potentiometer itself may be employed up to a testing fre-
quency of 1,000~ or over, if a correspondingly tuned vibration
galvanometer is used.

* C. V. DryspaLk, “The Use of the Potentiometer on Alternating-current
Circuits,”” Phil. Mag., vol. xvii, p. 402, March, 1909; also Proc. Phys. Soc.,
London, vol. xxi, p. 561, 1909; also T'he Electrician, London, vol. Ixiii, p. 8,

April 16, 1909; also J. A. FLeEmiNG's “Propagation of Electric Currents in
Telephone and Telegraph Conductors,” 1911, London, p. 216.
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In order to make the apparatus available, the impressed a.c.
frequency must be held nearly constant; not only on account of
potential variations along the line, caused by variations in fre-

Fia. 136.—Vibration galvanometer.

I
n

F1a. 137.—Front elevation and details of vibration galvanometer.

quency, but also because the auxiliary split-phasing and galva-

nometer tuning become distressingly upset when the impressed

frequency changes. If, however, the frequency cannot be held
15
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sufficiently uniform to make the apparatus serviceable, the ob
served values of impedance, potential and current, along the
line, are not likely to be closely dependable under any method
of measurement.

Line Potentials by Electrostatic Voltmeter.—If an a.c. volt-
meter is used to determine the potentials at line junctions or mi¢
sections, it is very desirable to use an electrostatic voltmeter, in
order to avoid the reduction of potential brought about by the

\ 3

!

Fia. 138.—Connection diagram for plane-vector potential test along a..
artificial line.

admittance of the instrument. In practice, a good arrangement
is to employ one electrostatic voltmeter over the range between
2 and 20 volts, another over the range between 20 and 100 volts,
and a third for higher voltages. The calibrations should be care-
fully checked, from time to time, on storage-battery voltages.
Since an electrostatic voltmeter, used in the ordinary way,
measures the size but not the slope of the a.c. voltage to which
it is applied, additional

(o] Genorator Knd Voltage V, [e .PQ N
&« measurements are needed in
&
<& order to evaluate the slope.
4

QG Fig. 138 shows a method for

carrying out this plan. If the
7 potential V, has to be meas-

Fig. 139.—Triangle of threc observed ured between junction 4 and
:52&%%2 'for determining their phase ground, the potential V,, at
the generator end is also

measured, as well as 1V, the voltage drop between A and 4. In
practice, V4 is measured once for all, and held constant by means
of an auxiliary a.c. voltmeter, which need not be electrostatic.
A single testing electrostatic voltmeter is used to measure V,
and V,, alternately in succession. The three values V',, V. and
V4 determine a voltage triangle, from which the phase or slope
of V4 can be determined, in the manner indicated in Fig. 139,
where OG is the generator voltage V, at A, GJ the voltage drop

NS ) 4
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F16. 140.—Curves showing phase relations of voltage and current for poi
on the open line.
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F1a. 141.—Line free at distant end—60 cycles per second.
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on the line, and OJ the voltage V at the test point. The size
of this voltage in Fig. 139 would be OJ, and its slope Xa°, taking
OQG as at standard phase. The triangle is easily produced graph-
ically, using the points O and G as successive centers, with inter-
secting arcs at J. The circular angle a° is then measured with
a protractor. There is a possible ambiguity as to the side of
OG on which the triangle should lie, which means that the slope

v

Distribution of Voltage and
Current over the Line

Sizes
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0 99.4 199 288 398 497 596 Miles

Fi1e. 142.—Voltage, current and phase relations along line at 60 cycles per
second and no-load. Rectangular coordinates.

a° might be either Za° or Xa°; but ordinarily, there is no diffi-
culty in deciding this either by the aid of a rough calculation, or
by means of a special test with an added known reactance.

The triangulation is repeated at each junction on the same
sheet of polar coérdinate paper, keeping the generator end
voltage V. constant, say at 100£0° volts. Fig. 140 gives an
example of this procedure in the particular case of a 13-section
line of the type defined in Table XII and representing 1,040 km.
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of aerial power-transmission conductor operated at 60.7~, with
the distant end free, and with 100 volts r.m.s. impressed at th
generator end. The successive vertices of the triangles obtained
from electrostatic voltmeter measurements fall on the points 1.2
3, . . . 13, which, connected by the line VVV, show the grapt
of potential along the artificial line, and also, by inference, on the
conjugate smooth line at this frequency. The open-end voltag
is 173.8X61°. The observations are recorded both by voltmeter
and potentiometer for this case in Table XV.*  Two othe
methods of presenting the results of these observations to the
eye are given in Figs. 141 and 142.

Relative Advantages of Potentiometer and Voltmeter Methods.
—The electrostatic voltmeter method of measuring line poten-
tials has the advantage that its technique is simple and requires
but little preparation. Impressed potentials of 100 volts r.ms.
are ordinarily applicable with it. Disadvantages are that its
precision is seldom very high, because it is a deflection method,
and moreover, if there are harmonics in the wave of impressed
voltage, these enter into the measurements by perpendicular
summation, as already described, and vitiate the results for the
fundamental frequency as obtained by computation. The
potentiometer method, on the other hand, is capable of much
greater precision, and the tuned vibration galvanometer responds
almost entirely to the fundamental sinusoid, but it involves a
more elaborate technique. For class-laboratory work, therefore,
the easier voltmeter method is to be preferred, unless the gen-
erated voltage wave available is very impure. For research pur-
poses, the potentiometer is superior. In potentiometer measure-
ments, it may be advisable to limit the impressed voltage at the
generator end to 1.8 volts, so as to dispense with multipliers and
their attendant errors.

Relations between the Impressed Voltage, the Current and
Power.—In Fig. 143, we have an artificial line whose line impe-
dances and leak admittances may be assumed properly to
correspond with those of a certain imitated conjugate smooth
line. The motor-end load Z, also has the same apparent im-
pedance as the load which the actual line has to carry, as deter-
mined by the vector ratio of receiving-end volts to amperes. We

* ‘“ Measurements of Voltage and Current over a Long Artificial Power-
transmission Line at 25 and 60 Cycles per Second,” by A. E. KENNELLY and
F. W. LIEBERKNECHT, Proc. A. 1. E. E,, June 25, 1912.
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have to consider how the current and power in the artificial-line
impedance model compare with those on the actual line as the
impressed voltage is varied.

It will be evident, on examination, that if the voltage impressed
on the artificial line in the laboratory is 1/nth of that impressed
on the actual line at the same frequency, the artificial-line
currents will be 1/ath those at corresponding points on the
actual conjugate smooth line, and the artificial line powers will
be 1/n? these on the actual line. Thus if the star voltage on a
three-phase transmission line is say 10,000 volts r.m.s. to neutral,
and its conjugate artificial-line impedance model is operated at
10 volts r.m.s. to ground, or 1/1,000th of the actual working
pressure, then each milliampere of observed current at junctions
will correspond to an ampere on the actual line, and each micro-
watt of power on the artificial line will represent 1 watt on the
actual line. The results obtained in the laboratory are, therefore,

A B
T 5|
' 1

Ty

F1a. 143.—Impedance model of a single-phase, single-wire line and its
receiving-end load.

= — Vi

readily interpretable in ordinary magnitudes, if we maintain the
correct motor-end load impedance.

The effects of synchronous-motor or “rotary-condenser” com-
pensation at any point on the line, say at the receiving end, on
the voltage regulation, can be investigated experimentally by
connecting the proper equivalent reactance to the line at that
point, and studying the corresponding distributions of potential
and current.

Current Tests.—There are three types of tests for alternating
current along an artificial line; viz., potentiometer tests, fall of
potential tests, and ammeter tests.

Potentiometer Tests for Vector Current.—In this method, a
small non-inductive resistance of manganin strip, say 0.1 ohm,
is inserted in the line at the test junction, and the vector voltage
drop in this measured at its terminals by a.c. potentiometer.
This method succeeds well at low frequencies, and the error
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introduced by the insertion of 0.1 ohm at any junction is ord-
narily unimportant. This is a useful “research method.” An
appropriate set of contact plug connections is indicated in Fig
144.

Sectional Fall of Potential Tests.—When an electrostatic volt-
meter capable of measuring from 2 to 20 volts is used, the voltage
drop upon a reactor in the line, adjacent to the test point, can
be observed. Knowing the vector impedance of the reactor, and
the slope of the vector drop from triangulation, as above deseribed,
the vector current strength in the reactor can be immediately
deduced by Ohm’s law. This is a useful “laboratory-class
method.”

Ammeter Tests.—Occasionally, the line currents may be ob-
served directly by the insertion of a suitable a.c. ammeter at the

To Potentlometer

To Potentlometcr or
Btatic Voltmeter

Fi1a. 144.—Conncetions used in a series of measurements of potential and
current along the line.

test junction. Ordinarily, however, the impedance of the am-
meter is sufficiently great to introduce an appreciable error into
the line distributions.

Distribution of Test Operations among Observers.—It is pos-
sible for a single observer, if he has ample time at his disposal,
to make, unaided, all the observations of potential and current
along an artificial line, if all the apparatus and controlling devices
are conveniently arranged. It is much easier, however, for two
observers to carry on the work between them. As many as six
observers may cooperatively take part in the observations, with
mutual advantage, especially if the electrostatic voltmeter meth-
ods are used.

There are a number of tests which can be effectively carried
out by students of electric transmission on an artificial line
with different line lengths, impressed frequencies, loads, load
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power factors and positions of load. As a rule, such tests on a.c.
artificial lines should be preceded by preliminary tests on c.c.
artificial lines. Such a.c. experiments properly checked, and
supported by computation, give the student an unassailable
comprehension of essential steady-state a.c. line phenomena.

Barretter Tests.—The Fessenden hot-wire barretter has been
employed in measuring apparatus for determining the distribu-
tion of potential and current over an artificial telephone twisted-
pair line.* The barretter consists of a little filamentary loop of
platinum a few millimeters long, and a few microns in diameter,
etched electrochemically out of a piece of platinum-cored silver
Wollaston wire, and warmed by the passage of the feeble alter-
nating current to be measured. The rise in temperature is
detected by change in the resistance of the filament in a local
c.c. circuit.

The technique of these barretter instruments is somewhat
difficult, and the barretters themselves are apt to burn out by
accidental current overloads. Improvements in a.c. potenti-
ometer testing methods, employing the inherent sensitiveness of
the vibration galvanometer, have brought the latter methods to
the front rank, and they are likely to be still further improved.
In special cases, however, the barretter method has undoubted
advantages.

Measurements of Individual Inductances.—Although the
measurement of the inductance of a line-section reactor belongs
to the general domain of laboratory electrical measurement
rather than to the particular province of artificial lines, yet it
may be of service to offer a brief outline of the tests which have
been found to be conveniently adapted to the measurement of
artificial-line section elements. For more detailed and compre-
hensive information, the reader may refer to text-books on elec-
trical measureinents.

In addition to the Rayleigh-bridge method already described
in connection with Figs. 129 and 130, there are at least two

* “High-frequency Telephone Circuit Tests,” by A. E. KEeNNELLY,
Proc. Int. El. Congress St. Louis, sec. G, vol. iii, pp. 414-437, 1904.

“On the Production of Small Variable-frequency Alternating Currents
Suitable for Telephonic and Other Measurements,” by B. 8. Couex, Phil.
Mag., September, 1908, and Proc. Phys. Soc., London, vol. xxi, 1909,
p. 283.

* Description et Utilisation de la Méthode pour la Mesure des Constants de
Ligne au Moyen du Barretter,” BELA GAT1, La Lumsiere Elec., October, 1908.
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other bridge methods which have been found useful in the meas
urement of line-section reactor inductances, namely:

1. The Anderson bridge.

2. The Campbell bridge.

It is always desirable to employ at least two methods in the
measurement of the section inductances, especially when the
reactors are non-ferric, and a fairly high degree of precision is
aimed at. In the tests by different methods, different rheostats,
instruments and parts should be employed, as far as possible.
If the results arrived at, with different apparatus, in these differ-

— "

F1a. 145.—Anderson bridge for measuring impedance.

ent ways, are in close agreement, their mean values become cor-
respondingly reliable.

The Anderson bridge is indicated in Fig. 145. The reactor
Z is first balanced to continuous currents by the resistance R
and an ordinary c.c. galvanometer G. Leaving A, B, R and Z
unchanged, the a.c. source E is substituted for the c.c. source e,
and either a telephone or a vibration galvanometer for the c.c.
. galvanometer. An a.c. balance is then obtained by adjusting
the condenser C, with the aid perhaps of adjustment in the bridge-
wire resistance r. The final capacitance of the condenser C is
supposed to be known. The inductance L of the reactor is then
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= I—_rc’p——lfc,w, (r + %’—. + R) henrys (398)
Here p is the effective internal resistance in ohms of the capaci-
tance C at the testing angular frequency w radians per sec. If
the capacitance C is pure, p = 0, and the formula reduces to
the well-known form

L =CB (r + %f + R) henrys (399)

This method is very serviceable when a suitably adjustable con-
denser is available.*

The Campbell Mutual-inductance Bridge.—Another con-
venient device for measuring the inductance of line reactors with

L

(o]

F1a. 146 —Campbell bridge for measuring impedance.

precision is the Campbell mutual-inductance bridge, the con-
nections for which are indicated in Fig. 146. The bridge arms
A and B are adjustable anti-inductive rheostats. The zero-
current indicating instrument G is preferably a vibration gal-
vanometer tuned to the frequency of the a.c. testing source. The
inductometer Mm consists of a pair of like coils L,Ls, with ad-
justable and measurable mutual inductance on the secondary
windings M and m. Assuming that the bridge arms A and B

¢ “A Handbook for the Electrical Laboratory and Testing Room,”
by J. A. FLEMING, vol. ii, p. 192.

““The Propagation of Electric Currents in Telephone and Telegraph Con-
ductors,” by J. A. FLEMING, 1911, p. 208.
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are equal, it is necessary for a zero balance in G that the resist-
ances of the arms be and cd should be made equal, by adjusting
the resistance R, and also that the inductance of the reactor Z
should be balanced with the aid of the mutual inductances M
and m. The unknown inductance L, will then be*

L.= L+ 2M+ m) henrys (400
where £ is the auxiliary fixed inductance inserted in the arm of

in cases where the mutual-inductance range (M + m) is les
than half the inductance L, to be measured.

Fia. 147.—Campbell variable Fi16. 148.—Connections for con-
mutual inductance. denser test.

The Campbell variable mutual inductance containing the coils
L\L.M and m is illustrated in Fig. 147. The primary coils L,L.,
(Fig. 146) of about 6 ohms cach, are connected to the binding
posts on the right-hand side. The secondary coils, of about 7
ohms™ in all, are connected to the terminals on the left-hand
side. The graduated dial indicates to microhenries.

Measurements of Section Capacitances.—Since mica condens-
ers in sufficient number to satisfy an ordinary artificial line are
expensive and difficult to obtain. condensers of rolled impreg-
nated paper are customarily employed. Such condensers vary
appreciably in capacitance and leakance at different frequencies,

*“On the Use of Variable Mutual Inductances,” by A. CaMPBELL,
Phil. Mag., January, 1908, pp. 155-171: also Proc. Phys. Soc. London, vol.
XXI1.

“The Use of Mutual Inductometers,” by A. CameBeLn, Phil. Mag.,
April, 1910, pp..497-507; also Proc. Phys. Soc. London, vol. xxii.
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ordinarily diminishing in capacitance and increasing in leakance,
as the frequency and temperature rise; so that it is desirable to
measure these quantities at the frequency and temperature
which are to be employed in the tests.

Two convenient methods are available for measuring the ca-
pacitance and leakance of a condenser,* namely:

1. The series-resistance method.

2. The Anderson-bridge method.

The Series-resistance Method.—The two condensers to be
compared are connected in a bridge as shown in Fig. 148. The
two ratio arms of anti-inductive resistance A and B—preferably
equal—are adjusted for zero balance on the vibration galvanome-
ter G, which is tuned to the testing frequency. The condenser
of C farads under test has a certain equivalent internal series
resistance p ohms, and the adjustable condenser is C, whose
internal resistance is p;. By adjusting C, and either r, or rs,
balance is obtained. Then

C = Cl-g farads . (401)
and
p= ﬁ (ri+p1) — 12 ohms (402)

The last formula expresses p in terms of the observed resistances
1, 72 and the internal resistance p; of the adjustable condenser.
If p, is not known, some standard mica condenser of small known
p may be bhalanced as a substitute for C, so that from it p; may be
determined. The phase angle defect of the condenser C or the
complement of its impedance angle will be

¢ = tan~'(pCw) degrees (403)

The leakance G, in parallel to the condenser, equivalent to the
resistance p in series with it, is very nearly
G = pclw? mhos (404)

Anderson-bridge Method.—The Anderson bridge, already
illustrated in Fig. 145, instead of being used to measure an un-

¢ “Simultaneous Mecasurements of the Capacity and Power Factor of
Condensers,” by F. W. GRoOVER, Bulletin of the Bureau of Standards, vol.
iii, pp. 371-431, 1907.

“The Capacity and Phase Difference of Paraffined Paper Condensers as
Functions of Temperature and Frequency,” by F. W. Grover. Bulletin
of the Bureau of Standards, vol. vii, No. 4, pp. 495-578, 1911.
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known inductance in terms of resistances and a known capaci-
tance, may be used inversely to measure an unknown capacitance
in terms of the resistance and a known inductance. A suitable
standard condenser of known capacitance and internal resist-
ance is first balanced and the unknown condenser then substi-
tuted. From the two balances, both C and p can be evaluated.

Frequency Measurements.—Artificial-line tests conducted at
power-distribution frequencies call for no recommendations as
to the measurement of impressed frequency beyond watchful-
ness and care. The ordinary laboratory frequency meters,
properly checked and calibrated, are satisfactory. A good means
of checking the frequency of a vibrating-reed frequency meter
is to examine it, in a good light, through the vibrating slits of a
stroboscopic tuning fork.*

At telephonic frequencies, however, special methods are
needed for measuring frequency with the necessary degree of
precision. One means is an improved stop-watch electromagnetic
revolution counter.t

A second means is a stroboscopic tuning fork applied to a
target mounted on the shaft of the alternator supplying the
testing current. In practice it is found convenient to place the
testing apparatus within view of, but at a suitable distance
from, the alternator. The observer at the apparatus can then
control the speed and delivered frequency of the alternator by
a hand rheostat, while he watches the stroboscopic image of
the illuminated rotating target on the alternator, at a distance
of say 15 meters, through a small telescope which has a stro-
boscopic fork mounted in front of its eyepiece.

A third means is the acoustic tonometer, or series of small tun-

¢ “The Measurement of Rotary Speeds of Dynamo Machines by the
Stroboscopic Fork,” by A. E. KENNELLY and S. E. WHiTING, Trans. A. 1.
E. E,, July, 1908, vol. xxvii, pp. 727-742.

“Stroboscopic Measurements of Alternating-current Frequency with
Electric Lamps,” by A. E. KENNELLY, Electrical World, Dec. 26, 1908.
‘“Separation of the No-load Stray Losses in a Continuous-current Machine
by Stroboscopic Running-down Methods,” by D. RoBERTSON, Journ. Inst.
Elect. Engrs., vol. liii, February, 1915, pp. 308-322.

““The Stroboscope in Speed Measurements and Other Engineering Tests,”
by D. RoBERTSON, Trans. Inst. Engin. and Ship Builders, vol. vi, 1912-13,
pp- 37-82. Mech. Eng., vol. xxxi, 1913, pp. 512-515, 539-543.

t “Experimental Researches on Skin Effect in Conductors,” by A. E.
KeNNELLY, F. A. Laws and P. H. Piercg, Trans. A. 1. E. E., September,
1915, p. 1757.



TESTS OF ARTIFICIAL LINES 239

ing forks, such as are found in acoustic laboratories. The testing
alternating current is supplied through a suitable impedance to an
ordinary telephone receiver, and the observer finds by trial the
tuning fork giving the pitch nearest to that of the telephonically
emitted tone. When the a.c. frequency is steady, as, for example,
when it is delivered from a carefully operated Vreeland oscillator,
the difference in pitch between the a.c. telephonic tone and the
tuning-fork tone can be found by counting acoustic beats during
a measured time interval, such as half a minute. _

Frequency Limitations of Artificial Lines.—It will be evident
from an inspection of Figs. 98 and 99 with their polygonal sec-
tion voltages and currents, that as the frequency impressed upon
an artificial line is increased, the number of sections per wave is
diminjshed, and the lumpiness correction factors tend to in-
crease. There is ordinarily no difficulty in operating an artificial
line up to the frequency which provides on the average three
sections per wave, although the correction factor is then sensi-
tive to small frequency changes. Operation ordinarily becomes
impracticable at or below two sections per wave.



CHAPTER XIV
COMPOSITE LINES

A composite line is a line composed of a plurality of single lines
in series, each possessing its own linear electric constants. In
practice, composite lines are more frequently met than single
lines, especially when long circuits are used. Thus, a telephone
circuit may include an underground-cable twisted pair, from the
subscribers’ set to his local exchange, then a different size of
underground-cable pair to the outskirts of the city, then one or
more different sizes of overhead copper-pair lines, and finally
underground lines to the called subsecriber’s set. No steady-state
working theory of a.c. lines can therefore be satisfactory, which
fails to deal with composite lines in a reasonably simple way.

We may first consider the d.c. theory of composite lines employ-
ing real hyperbolic functions, and then apply it to a.c. cases, by
vector interpretation of the formulas; 7.e., by extending them from
one dimension to two dimensions.

-
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FiG. 149.—Two-section composite line of constant surge resistance.

Case of Two Sections Having Different Linear Constants but
the Same Surge Impedance.—If two single lines AB, CD, Fig
149, are joined at B(', and these lines happen to possess the same
value of surge impedance zo, then the composite line AD has
very simple properties.

Suppose the composite line AD to be grounded at D and vol-
taged at A. Let 8, be the angle subtended (18) by AB, and 6:
that subtended by CD. Then, if we assign position angles to
the system, commencing at 1) where 8, = 0, we find the position
angle at C is 8 = 6.. The line impedance at C is also

Z. = zotanh 8- = zotanh 6;  ohms Z (405)

The section ('D may now be regarded in its entirety as a single
210
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motor-end load applied to the section AB. Then by (89),
o = Zcand

tanh 7 = ¢ = % tanh &

2 20

whence 6’ = 0;. Consequently, at a junction between single lines
possessing identical vector surge impedances, the position angles
on each side of the junction are equal. The reason for this is that
each and every individual electric wave which passes a junction,
either way, undergoes no disruption, unless the surge impedances
of the sections differ. The wave passes over from one section
to the other as though the junction did not exist.

The position angle at A, Fig. 149, will now be 6, = 6, + 0.
hyps. Z, and the distributions of potential, current and impedance
will be continuously proportional, respectively, to the sinh, cosh
and tanh of the position angle, as on an ordinary single line.

Similar conditions will present themselves if we ground the
composite line AD of Fig. 149, at A, and voltage it at D. The
position angles will distribute themselves over the system without
any discontinuity at the junction BC. Again, if one terminal
of the composite line, having unchanged surge impedance, is
grounded through a terminal load, subtending a terminal angle
6’, the position angles will increase continuously to 6, = 6p =
6, + 02 + 6’ hyps. Z at the other end.

= tanh 6; numeric Z (406)

Af’ p"-zo sinh (§,404) = 2o sinh 34
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F1a. 150.—Equivalent IT of two-section composite line with constant surge

impedance.

Equivalent IT of Composite Line with Constant Surge Impe-
dance.—The equivalent IT of the composite line of Fig. 149,
with constant z, is shown in Fig. 150. The architrave p’’ has an
impedance z, sinh 8, = 2, sinh ép, the position angles, é, and &,
being each reckoned from the opposite grounded end. The ad-
mittance of the A leak is

g4 =Y, —1/p"= yocoth §,—1/p"” = yo coth 6, — »
mhos Z (407)
16
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Similarly, the D leak admittance is
9o = Yo—1/p""= yocoth §p—1/p" = yo coth ép— »

mhos £ (408,
where the architrave admittance is

= 1/p" mhos Z (409)

These two leaks are equal. At either end, the rule is: Ground
the composite line at the distant end. The home-end leak will

A 612 B c__6:-1 »p
21=100 O _ 24=1000 12
A" x26.:Q B m .mn 1. ..om o’ ummQ  p c,nmsnoamn -
D[s-EABxW0" O 1 mxlo"u 1mxm"u 8.50018x 10" ‘3|  2.16306 x1073 | 2.16396X 17
) £ =} 2
Bl (S sla tle gle
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F1a. 151.—Two-section composite-line merger and hyperbolic equivalent
circuits.

then be equal to the line admittance at the home end, minus the
architrave admittance v.

In Fig. 151, we have a particular case of a composite line with
elements of equal surge impedance. The line AB has an angle

= 2.0 hyps., and z; = 1,000 ohms. The line CD has 6, = 1.0,
and z, = 1,000 ohms. Beneath each line is placed its equivalent
IT and equivalent T. The two lines are connected at the junction
BC. The mergerII and T are indicated underneath the compos-
iteline AD. The “mergerIl,” A"’ D", is such as can be obtained
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by direct computation from (406) to (409), Fig. 150. The
merger T, A’'D’, can also be computed by hyperbolic formulas,*
but we shall, for simplicity, here confine ourselves to a considera-
tion of merger equivalent II’s, and hyperbolic equivalent I1’s.
MergerIl’s and Hyperbolic II’s.—1In all cases of composite lines,
it is possible to replace each single section by its equivalent II,
to connect these I’s end to end, and to resolve them, by successive
steps, into a single resultant or merger equivalent II. Thus, in
Fig. 151, the central star ABCDG, of the double I immediately
under and to the left of the composite line AD, can be replaced,
. through known formulas, by its equivalent delta, and so lead
to the merger equivalent II, A’”’D’’. This process is very labori-
ous, and liable to arithmetical error. The process of obtaining
the same equivalent II of the composite line by line position
angles is much simpler. This process leads to what may be
called the “hyperbolic II.”” In the example offered throughout
this chapter, the final IT has in each case been obtained by both
the merger and hyperbolic methods, as mutual checks; but only
the hyperbolic method is recommended in practice.
Transmission and Reflection Coeflicients for Individual Waves.
—If a composite line is composed of two single lines having differ-
ent surge impedances 2z, and z,, Fig. 152, then a voltage wave;
i.e., an electric-lux wave, advancing from z, to z;, will be disrupted
at the transition, in the manner originally analyzed by Heaviside. }
The transmission coefficient, m, or coefficient of voltage trans-
mission is

- 7 _ 2 i
m, = (2_1 _}_!’) = i+ numeric Z (410)
2
and the reflection coefficient — (1 — m,) is
' -2 i
m,— 1= 7 T numeric Z (411)

On the other hand, a current wave; t.e., a magnetic-flux wave,
advancing from z, to z;, will be disrupted, with a transmission
coefficient m,

_ __Zlv = 221 .
m, = (7:1 +i’) 7+ 2 numeric Z (412)
2

* “The Equivalent Circuits of Composite Lines in the Steady State,”
by A. E. KENNELLY, Proc. Am. Ac. Arts & Sciences, November, 1909.
t *‘ Reprinted Electrical Papers,”’ by O. HEAvisIDE, London, 1892, vol. 1.
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and a reflection coefficient — (1 — m,)

_Zl—lz
21+ 29

Thus, a wave of voltage 100£0° volts passing from a section of
surge impedance z, = 100£0° ohms to another of surge impe-
dance z; = 300£0° ohms, develops a transmission coefficient by
(410) of m, = 1.5£0°, or rises to 150£0° volts, after passing the
junction. The reflected wave has a coefficient 0.5£0°, or a value
of +502£0° volts. This reflected wave retreats along z,, and

me — 1 numeric Z (413)

6, =2 02-1.5
4 21=100082 5 ¢ Z9~2000 2 b
R wie

+ H . :
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F1e. 152.—Two-section composite line with equivalent I1 and T.

raises the voltage on that side of the junction to 150£0° volts.
There is thus no discontinuity of voltage at the junction, after
the incoming wave has split. The incoming current on z; was
100£0°/100£0° = 1.0£0° amp. On reaching the junction, it
splits, the transmitted current, by (412), being 0.5£0 amp., and
the reflected current, by (413), —0.5£0° amp. Before the transi-
tion, there was 100Z0° volts and 1.0Z£0° amp. on z;. After the
transfer there is 150£0° volts and 0.5£0° amp. on both. The
effect of the transition is, therefore, to raise the voltage and to
lower the current in the system, so far as this particular set of
waves is concerned.

The effect of the terminal impedances, as well as of composite-
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line junctions, is to split up the initial waves of potential and
current into subtrains, which move thereafter to and fro along
the circuit, undergoing further splitting and also steady attenua-
tion. The final state in the line is the vector sum of all these
split, reflected and attenuated waves, see Figs. 178 and 179.
In general, the arithmetical process of finding the resultant
steady-state summation is very long and tedious; but the
hyperbolic-function method of assigning potential and currents
is relatively very easy and swift, offering, as it does, a short cut
to the final result, without the necessity of adding the numerous
successive vector increments that present themselves in the
preliminary unsteady or formative state.

A §=2 B C  0,=15 D E 03=05 F

2Z,=100003 Zqg = 200002 Z3= 2000

£ i 2

= H

' Sis a7 =

1o [ ] "’ k: g L

s L o lo ol
A:l-o 0,=2 BiC 02=15 DiE 03=05 Ep
P Zim1000 8 z,- 200 s z,=200 e
2 g p %
3 x § o] .5 § =
o ed 3k £§
o oo o - o

o
F1a. 153.—Three-section composite line grounded at 4.

General Case of Composite Lines with Differing Surge Im-
pedances.—In Fig. 153, three line sections are presented with the
following constants:

For AB, 6, = 2.0, z, = 1,000.

For CD, 6; = 1.5, z, = 2,000.

For EF, 6; = 0.5, z3 = 2,500.
We proceed to determine the distribution of position angles,
potential and current over the composite line AF, when grounded
at A and voltaged at F.

Position-angle Distribution.—Starting from the grounded
motor end at A, the position angle 6, = 0. At B, the position
angle is cvidently 8; = 6,. The line impedance of BA at B is
z; tanh 6, = 1,000 tanh 2.0 = 1,000 X 0.96403 = 964.03 ohms,
and this may be regarded as a terminal load o at C, applied to
the section DC. The position angle at C just across the junction
from B is therefore, by (89),

Zen

22

= z‘ tanh 6, = 20403 _ 489015,
2

tanh 6. = 2000
)



246 ARTIFICIAL ELECTRIC LINES

from which §; = 0.525608 hyp. The junction BC thus intn
duces a discontinuity into the position angle. On the B sided
the junction, this angle is 2.0. On the C side, it is 0.52560

From C to D, the position angle increases in the regular way,
and at D it has reached the value 2.025608 hyps. The line im-
pedance at D is thus Z,, = z; tanh §, = 2,000 tanh 2.025608 =
2,000 X 0.96579 = 1,931.58 ohms. This may again be regarded
as a terminal load to the section FE. The angle subtended by
this load will be

o _myy, _LOBLSE _
tanh o = ";’— = Z tanh o = 2’5m = 0.772632,

from which §; = 1.02683 hyps. This position angle is marked
off on the upside of the DE junction.

From E to F, the position angle increases regularly to 1.52683
hyps. at F.

Potential Distribution.—Considering now a potential steadily
applied at F, the potential at any point along any section of the
composite line will be simply proportional to the sine of the position
angle. At the junclions there 18 discontinuily of position angle,
but no discontinuity of potential. If, therefore, the potential at
any point of the composite line is given, the potentials at the ends
of that section are readily found, and these give known potentials
at the terminals of the next adjacent sections, which likewise
can be worked up for potential distribution, and so on, throughout
all the sections.

Thus, having given that the impressed potential at F is 1.0
volt, the potential Vi is

sinh 1.02683

1.0 X Ginh 1.52683

= 0.55491 volt.

This must also be the potential V), at the beginning of the DC
section. Consequently, the potential V¢ is

sinh 0.525608

0.55491 X sinh 2.0*2*5668 = 0.081969 VOlt.

This must also be the potential V; at the beginning of the BA
section; while V, = 0, since the line is assumed to be grounded
at A.
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Line-admittance Distribution.—The line admittance in each
section will be, by (127), proportionate to the cotangent of the
position angle; so that .

Yo = y1coth ép = 10— X coth 2.0 = 1.0373 X 103
mho;
Yo = y:coth §p = 0.5 X 10~* X coth 2.025608 = 0.51771 X 10~3
mho;
Yor = yscoth 3, = 0.4 X 10~* X coth 1.52683 = 0.43961 X 103
mho.

The entering current Ir at F is therefore 0.43961 X 102 amp.
Line-current Distribution.—The line current in each section

may either be determined by the formula (128), or by taking the

cosines of position angles and using formula (111). Thus

_ 4y, cosh 102683 _ "
I = 043961 X 107 X ~——=ocs = 0.38728 X 10~ amp.

This must also be the current I, just beyond the DE junction.
Again,

IC = 0.38728 x 10_3 X cosh 0-525608

cosh 2.025608
This must also be the current I5 just beyond the BC junction.
Finally,

= 0.085028 X 10~* amp.

- _3 v Cosh0 _ s
I, = 0.085028 X 10— X cosh 2.0 0.022600 X 102 amp.

Power Distribution.—The power distribution over the compos-
ite line may be obtained either from the product of the local
volts and amperes, or, in each section successively, by taking its
size proportional to the sine of twice the position angle, and its
slope from the line impedance, as previously described.

General Case of Composite Line with Terminal Load.—If the
line, instead of being grounded directly at A, had been grounded
through a motor-end load of assigned actual or virtual impedance,
the procedure would be the same, except that instead of start-
ing with a position angle of zero at A, there would be a definite
starting position angle 8, = tanh—! (¢/z,) hyps.

Reversed Distribution of Position Angles.—If instead of
grounding the composite line at A, Fig. 153, and voltaging it
at F, we ground it at F, and voltage it at A, the distribution of
position angles will be different from that already found, but will
be determinable by the same process. The distribution is shown
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in Fig. 154, for the three-section composite line above considered.
Starting from F grounded, where §; = 0, 6 = 0.5 hyp. At the
other side of the junction DE, however, the line angle is

8» = tanh-! ( :’tanh 6.) = tanh—' (1.25 tanh 0.5)
tanh.

= tanh—! 0.57765 = 0.65802.

The position angle then regularly increases to 2.15892 hyps. at
C. Again,

8p = tanh—! (:2 tanh bc) = tanh~! (2.0 tanh 2.15892)
1
= tanh—! (2 X 0.97369) = tanh—! (1.94738)

a 0, =2 B C 6s=15 D FE f3=0.5 F

2=100Q N Z24=20000 Z4=25000
ikl ‘= X

i §! g

2 E' 5 1= o

' |§ .: o,° L)

e T Bl L}
D YA Ql u |
[P} |0 © 0 0

Al® 61=2 BIC 0;3~1.56 D!E §1=0.5 'F
o Z,=2000 B Z:= 0000 o Z4=25000 1
] E] 2

o x ® x ® x (-]

: g3 B

3 28 :

- S o S o e =

Fia. 154.—Three-section composite line grounded at F.

The antitangent of a quantity greater than unity must contain

an imaginary quadrant or j ; (see Fig. 23); so that
5s = coth™!(1.94738) + j; = 0.56748 + j = 0.56748 + j1.0 hyp.

The position angle now increases regularly to 2.56748 + j ;
at A.

The effect of the imaginary quadrant in the position angles
on the AB section will be virtually to transmute sines into
cosines, cosines into sines, and tangents into cotangents in using
the standard formulas.  This complication presents itself only
in c.c. eases. 1t does not intrude in a.c. cases.

Repeating the development of potential and current distri-
butions, we find that the current I, to ground at F is 0.022600 X
10 * amp., which is the same as I, in Fig. 153. This is a general
law which may be expressed as follows.*

* Am. e Arts & Seienees, loc. eit., 1909,
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Any composite line of any number of sections, with or without
loads of any kind, operated in the steady state either by o direct
current or by a single-frequency alternating current, has the same
recetving-end tmpedance from each end; so that if say 1 volt i3 ap-
plied to each end in turn, the current strength reccived to ground at
the other end will be the same.

It is assumed in the above proposition that all the elements of
the composite-line system are subject to Ohm’s law in complex
arithmetic; 7.e., that there are no faults, or bad contacts, subject
to erratic variation.

cosh 8¢ coshdg
cosh §3 cosh§),

p"=2, ainh 34 °

A F
IS :CL "_ . cosh 8 p cosh 8 5 }Q:
\‘ ’? P —zg sinh 8; L4 COO_-Th x._a—colh p :q. \
e N
|3 L 2
(& § (O]
[N S
AN *of W
v r
. .
A H“UAUTQ F
0.022600 x 103 U8
S >
o (=4
8|z 8|
§ »
8% L
° o
Y e

F1a. 155.—Equivalent II of three-section composite line.

Formation of the Hyperbolic Equivalent II of Composite
Line.—In order to form the hyperbolic IT of the composite line
represented in Figs. 153 and 154, we first find the value of the
architrave impedance and then, in turn, the value of each termi-
nal leak admittance.

The steps in the process are indicated in Fig. 155. The archi-
trave impedance by (252), if there were only a single section AB
in Fig. 154, grounded at B, and voltaged from A, would be

p"! = z;, sinh 8, ohms £ (414)

At each transition down line from the voltaged end, take the
ratio of the cosine of the downside terminal position angle to
the cosine of the upside terminal position angle. As there are
two transitions in Fig. 154, namely at B-C and D-E, the com-
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posite architrave impedance working from the voltaged end 4*i

" — 2, sinh 5, - <SR 3¢ cosh s 5

p"’ = z;8inh §4 cosh 3, " cosh & ohms Z (415

If we worked from the F voltaged end, with A grounded, we
should have for a single section EF (Fig. 153).

p"' = z3sinh & ohms £ (417
Applying cosine ratios at transitions in position angles we obtain

" — o, ginh 5. €080 8o cosh & 8
p'' = z;8inh & cosh 5, cosh 5, ohms £ (418}

The same process would be continued for any number of transi-
tions, one cosine ratio being applied for each in turn. The value
of p"" working fromn either end will be the same; t.e., p’’ is iden-
tical in (415) and (418).

Hence to find the architrave impedance of a composite line:
Ground one end, and determine the distribution of position angles
at transitions. The architrave p'’ has then the value which would
present ttself if the last single line were the only line, but multiplied
by the ratio of the cosines of the down to the up terminal position
angles, at each transition in turn.

The process is well adapted to either slide-rule or logarithmie
computation, when a number of transitions occur. A composite
line containing n single lines will embody n — 1 transitions and
n — 1 cosine ratios.

Thus, in the case above represented in Fig. 153, using (418),

. 2500 X s cosh 2025608 ., _cosh 2.0
p"" = 2,500 X sinh 1.52683 X~ 1 02683 < cosh 0.525608

3.8563 3.7622 _ 44,247 ohms.

= 2,500 X 2.1932 X . ___: -
000 X X 15752 X 1.1414
* “Jt may be noted that this formula (415) for evaluating the architrave
impedance from the position angles is not the only one available. An alter-

native formula is
sinh §p sinh &

sinh &c  sinh 8
This is called the “second method” in the original paper, Proc. Am. Ac.
Arts & Sciences, November, 1909. The first method only will be developed
here.

’”

p'’ = z;8inh 6, - ohms Z (416)
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Again, in the case of Fig. 154, using (415),
1r) v cosh 2.15892

9 biddonlienlehubig A O

cosh (0.57648 +J ;)

o = 1,000 X sinh (2.56748 +j

X Gosh 0.65892

. cosh 2.15892 cosh 0.5

= 1,000 X jcosh 2.56748 X ;' i1h 0.57648 X cosh 0.65802
4.3886 _ 1.1276

= 1,000 X 6.5549 Xb_5§8—4§ X 1.2951
Leak Admittances of Equivalent II.—The admittance of the
leak ¢g’’4 of the hyperbolic IT is equal to the line admittance at
A, minus the architrave admittance. By (127) the line admit-
tance at A to ground at F is G4 in the c.c. case or Y, in an a.c.

case. Using the latter for generality,

= 44,247 ohms.

}704 =11 COth 64
= 10-* X coth (2.56748 +j ’2') =103 X tanh 2.56748

= 0.98829 X 10~* mho.

The architrave admittance will be » = 1/p” = 1/44,247 =
0.02260 X 1073; so that

g’a =Yy —v=yicothd, — » mhos £ (419)
= (0.98829 — 0.02260)10~2 = 0.96569 X 10—2 mho.

Similarly, the admittance of the leak g’’r is equal to the line
admittance at F minus the architrave admittance. The line ad-
mittance at F to ground at A (Fig. 163), i8 Ggr (or Ygr in the gen-
eral case)

Y. = y; coth & mhos £ (420)
= 0.4 X 1072 coth 1.52683 = 0.4 X 10~* X 1.09905
= 0.43962 X 10~ mho;
so that
¢"’r = yscoth &y — » mhos £ (421)
= (0.43962 — 0.02260)10~2 = 0.41702 X 103 mho.
The leak admittance at either terminal of the equivalent Il of a

composite line is therefore the line admitlance of that terminal, re-
duced by the architrave admattance.
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General Considerations Concerning the Equivalent IT of a
Composite Line.—Since the line admittance will, in general, have
different values at the two terminals of a composite line, it follow:
that the terminal leaks of the equivalent I1 of a composite line hare,
in general, different values; or a composite line has a dissymmeltrical
equivalent II. Similarly, a composite line has, in general, a dis-
symmetrical equivalent T'.

The architrave impedance of a composite-line equivalent II is
the receiving-end impedance to ground; because if one terminal
is grounded and the other voltaged by V, the current to ground
must be ¥/p"" amp.

If, therefore, a motor-end load, of impedance ¢ ohms £, be ap-
plied successively to each terminal of a composite line, and the
other terminal is at the same time voltaged to the same potential
V, the current received through the load will, in general, be dif-
ferent in the two cases, unless ¢ =0. This is for the reason
that the value of the shunt applied to ¢ by the leak at that
terminal will be different in the two cases.

In order to find the architrave and the leak at one terminal
of a composite line, it is only necessary to work out the distribu-
tion of position angles over the system in the direction toward
the required leak. If, however, both leaks are required, so as to
complete the equivalent II, then it becomes necessary to work
out the position-angle distributions in both directions over the
system.

Terminal Cantilevers.—Cantilever is the name proposed for
the architrave and one leak* of an equivalent II. The architrave
and the leak at the voltaged end, such as can be computed from
one series of position angles toward that end, as in Fig. 156, may
be called the “A cantilever” of the composite line. The corre-
sponding oppositely developed architrave and leak as in Fig. 157
may be called the “F cantilever” of the same line. Although
both cantilevers have to be worked out, in order to complete the
equivalent II of a composite line, yet, in particular cases, it may
be necessary to work out only one of them. For example, if the
composite line is to be voltaged at A and grounded at F, it is of
no immediate practical interest to determine the F leak of the

*The term “Gamma’ (') has been suggested to denote one leak and
the architrave of an equivalent II; but this term is not easily applied for
the opposite case (1). The term “cantilever’” may be considered as ap-
plying to either case.
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equivalent II; because, by assumption, that leak is to remain
short-circuited. It is, therefore, only necessary in that case, to
work out the A cantilever, and to ground the distant end of the
architrave. When, however, the complete equivalent II, and

1
Ve kel !
¥ T !
]
2 53 i
°
“ g=2 17 ge=18 i 0408
24~ 1000 Zg =200 Z3= 20
o0
=
-
]
*
b
V-

F16. 156.—A-cantilever of three-section composite line.

both cantilevers, are computed, there is the advantage of the

check that the architrave impedance p”’ should be the same in
both.

0,=2 =15 63=0.6
2, = 1000 Zg=2000 Z3 = 2500
41

0.a72 x10°* U l

Fi1c. 157.—F-cantilever of three-section composite line.

Artificial-line Elements in a Composite Line.—If any single
line in a composite-line system be replaced by its proper conju-
gate artificial lumpy line, having any number of T or IT sections,
the steady-state distribution of potentials and currents in the
rest of the system will remain unchanged. Consequently, any
composite-line system may be completely replaced by the corre-
sponding system of conjugate artificial lines, with or without
corresponding loads at their ends.
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Loads.—Loads in a line may be either regular or casudl
Regular loads are such as are applied at regular intervals, in
order, for instance, to improve the current delivery on telephone
cables. Casual loads are of an irregular or incidental character,
such as might occur at transitions, or at the terminals of a com-
posite line. In the former case, they would be intermediate
casual loads, and in the latter case terminal casual loads. We
shall discuss regular loads in Chapter XVI, so that only casusl
loads will be considered here.

Loads may also be divided into two classes, namely : impedance

o

3., = 0.100338
85 = 2.1003%
3¢ = 0.629812
3p = 2.020612
35 = 1.02709
8, = 1,627398

o
100 3 6,=2 | 6:=15 | 6s=05 |
VA T AA 21=100 BC Z:1-%0 DE Z3=20 F

Ao 48620 (3 F
-3
0.02067x 103 U o
=
§
o

F1a. 158.—Three-section composite line with terminal resistance load at A.

loads, or those inserted in the line, such as resistors or reactors;
and leak loads, applied in derivation to the line.

Terminal Impedance Loads (Motor-end or Down-end).—Ter-
minal impedance loads commonly present themselves in practice.
They are necessarily the rule rather than the exception. Fig.
158 shows the same three-section composite line as in Fig. 153,
but with a terminal load of 100 ohms at A. With the line
voltaged at F, and grounded at A, this is a motor-end load.

No position angle can exist within a simple impedance load.
On the upside of the A terminal, however, §, = tanh—! (100/
1,000) = tanh—! (0.1) = 0.100336 hyp. The successive transi-
tions in position angle arc indicated at B, C, D and F. At F, the
position angle is 8 = 1.527396 hyps., and this is the angle sub-
tended at F by the loaded composite line. The admittance at
F is, therefore, Y, = 0.4 X 10-3 coth 1.527396 = 0.43957 X
107 mho. The architrave impedance is, by (418),
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w_, . coshd, coshds cosh by,
o’/ = zzsinh & cosh 3, cosh 3, cosh 5, ohms Z (422)

= 2,500 X sinh 1.5274 X cosh 2.0298 X cosh 2.10034

cosh 1.0274 ™ cosh 0.52981
X cosh 0
cosh 0.10034
3.87196 _, 4.14569 1

= 2,500 X 2.19454 X X 232009 L __

1.57587 7 1.14366 ~ 1.00503
= 46,819.7 ohms.

It may be observed that when the system AF of Fig. 153
is reduced to a single line, by eliminating discontinuities at
B-C and D-E, formula (422), becomes equivalent to formula
(134). The architrave admittance is thus » = 1/48,620 =
0.020568 X 10~? mho. Subtracting this from the line admit-
tance at F, we obtain the F leak of the equivalent II; 7.e.
(0.43957 — 0.02057)10~% = 0.41900 X 10~* mho. This com-
pletes the F cantilever, so that for 1.0 volt applied at F, the
current entering the line is 0.43957 milliamp., of which 0.41900
may be regarded as going to ground directly through the F
leak, and 0.02057 milliamp. through the load at A to ground.

It is important to notice that when the motor-end load is
included in the architrave, as in the case just considered, there is
ordinarily no need of knowing the value of the leak g/, in the
equivalent IT at the motor end, because it becomes short-cir-
cuited by the ground connection beyond the load. The genera-
tor-end cantilever is all that is necessary for determining the
electrical conditions at the terminals of the composite-line
system.

Change in Equivalent II to Include a Motor-end or Down-end
Terminal Load.—Another way at arriving at the change in the
F cantilever when a terminal load is added at A, which does not
require a recomputation of position angles over the line, is
indicated in Fig. 159. In the upper part of the figure, a load of
oohms Z, or 4 = 1/0 mhos £, isadded to thelineat the A terminal.
If we employed the equivalent T of the system, it would be
necessary only to add ¢ ohms to the A arm of the T, and the
proper modification in the equivalent system would be made.
But since the equivalent IT is more generally useful, we proceed to
find the I which may replace the T of Fig. 159, A¢cAFg,. This
substitute IT is shown in the lower part of the figure, with sloping
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pillars. The architrave p’’ is greater than the original architraw
p, by the load ¢ and the term pog;. The leak at A, is the origiml
|

leak g; mhos multiplied by the ratio #_+:‘_+Zl’ or in this cae
10 10 .
10 + 0.0226 + 0.96569 — 10.9883" W hich reduces the 4, leakto .
0.87884 X 102 mho. The architrave is
" =p+ 0o+ pog ohms £ (4%
= 44,247 + 100 + 4.4247 X 10° X 0.96569 X 107
= 44,347 + 4,273 = 48,620 ohms.

A o=p A =% F
1000=10x10"* O 4UAUTN =0,022600x 10°° U

0.417016x 10" * U

0,90669 x 1030

4562002 = 0.020568 x 10°° 0

P =p+ 0+ pog, F
R,+©0
o) 3
R & -
a g%
l: 2 x
+ x <
o8/ |
§ |s
o "’
———

0.41900x 10°*3
Fra. 139 —Modifieation of 8 compusite-line equivalent I so as to include
a terminal impedance load.

The additional leak at Fis
r
e\, ) g:) mhos Z (424)
in this ease,
Q022

) 963G N\ 10 -0
ORRBEENTOTN 0 osss

= 0.001986 X 103,
which added to the exasting leak ar ¢: makes the new F lesk
Qo N 10 f mbo. With the syvstem grounded at A, the
AL lealh s ondinanth of no Dmportance.

Terminal Load at the Generator End or Up End.—If the ter-
nunal woawd e ochms oo appaed a8 the seperator end, then as in



[V

COMPOSITE LINES 257

Fig. 154, we ground the system at F, and distribute position
angles toward A. No change occurs in this distribution, but
the line impedance Z,,, is increased by o (Fig. 160) with a corre-
sponding change in the line admittance Y 4.

The line impedance Z,, at A, as in Fig. 154, is 1,011.9 ohms,

- with the F end grounded. The cantilever at A, before applying

o =}
L] L]
's hlnhl“ '3 (N
cz ITS: 3T
=§ gzl 3y 3
=2~ § 22s 8 - A0
] I o |e = o
: :‘; 'L " g: nln ujn ]
Qo Sl oS e &
100 O 0,=2 0:=15 0,=0.6
A, AA 2,=100 BC Z3=2000 DE 2Z3=2500 F\
Ao 100 A p=4201Q F
T > = 0.0200x10° ©
ole
; -]
HE
§—0
s
A, £"=48620 0 F

v "=0.020668x 10°2 §

0.87884 10"
137.9Q

F1G. 160.—Composite line loaded at the generator end with a terminal im-
pedance, and the corresponding A, cantilever.

the load, has an architrave impedance AF of 44,247 ohms and a
leak of 0.96569 millimho = 1,035.5 ohms. The new line im-
pedance at A will be 1,011.9 4+ 100 = 1,111.9 ohms. The effect
of the load with its change of terminal from A to Ao is to increase
both architrave and leak impedances in the ratio of the new line

. 1,111.9 _ . -
impedance to the old; or 10119 = 1.0988. That is,
7 _ Zga '*f o
o = p( Zon ) ohms £ (425)
1 _ 1 (Zy+o
and s ( Z,. ) ohms £ (426)
or g"l =0 (Z;Aza-i'u) mhos £ (427)

17
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Thus the A, cantilever, Fig. 143, has an architrave impedsne
of
p” = 44,247 X 1.0988 = 48,620 ohms,

"o 1 -
and ¢, = 0.96569 X 1.0988 = 0.87884 millimho,

1 10? _ )
or o = 096560 X 1.0988 = 1,035.5 X 1.0988 = 1,137.9 ohms.

This is a general principle expressible in the following terms.

Effectof a Terminal Load on the Cantilever at That Terminal -
The addition of a terminal impedance load to any composite lin
alters the impedance of the architrare, and of that terminal's lest,
tn the ratio of the increase in line impedance, when the distani end
ts grounded. This proposition holds whether the composit-
line system had or had not other loads before the addition of the
terminal load. The proposition also holds whether the terminsl
to which the load is added is a generator end or a motor end; but
it is serviceable only when the position-angle distribution ha:
been worked out with the unloaded terminal as a motor termins!
to ground in order to determine the value of Z,, = z, tanh j,
ohms Z.

If. therefore, we apply 1 volt at Ao, Fig. 160, the total cur-
rent taken by the composite-line system will be (0.8788% +
0.02057)10~* = 0.89941 X 10—? amp., of which 0.8788% X 10
amp. pass through the virtual terminal A, leak to ground, while
0.02057 X 10~* amp. will pass out at F, the distant grounded
end of the syvstem. If the potentials and currents along the
line are required. they will follow respectively the sines and cosines
of the position angles. except that from 4, to A, there are no
position angles and the line current in the terminal load is con-
stant with a simple Ohm’s law potential drop.

By similar reasoning. {f an impedance is remored from a ter-
minal. the impedance of the architrare and of the same terminal’s
leak tn the comiposite-line equivalent I will be altered tn the ratio of
the terminaldine imipedance before and after the change, the distant
termirnal beivig to grouvid.

If instead of the A: cantilever. the full equivalent IT of AF
iz required. the change in the F leak can be determined by (424);
or by 421 | after distributing position angles from 4, grounded
up to F.

In the case of a siugle uniform line 9. z.» we know that Z,, =
2: tanh # will have the same value from each end in turn. Con-
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sequently, the addition of a terminal load o will have the same
effect on the architrave at whichever end it is applied. Before
loading, the architrave will be p = zo sinh 6, and after loading,
by (425), see ( 135).

p’’ = 2,8inh @ (fﬁtt&phj9 nd ) = 2o 8inh 6 + o cosh 6

ohms Z (428)

But in the general case, the line impedance Z, of a composite
line will be different at the two terminals A and F; so that the
effect on the architrave of a given terminal load ¢ will be different
when it is applied to each terminal in succession. In the case
of the three-section composite line of Figs. 153 and 154, apply-
ing ¢ = 100 ohms at A, makes the A.F architrave 48,620 ohms,
as above; whereas applying ¢ = 100 ohms at F, makes the AF,
architrave 46,192 ohms.

Virtual Angle of a Generator-end Terminal Impedance.—
We have already seen in (89) and elsewhere, that a simple motor-
end or down-end terminal load o, although devoid of hyperbolic
angle in itself, yet possesses a virtual angle 8’ when added to a
line of definite surge impedance. In the same way, a generator-
end or up-end terminal load ¢ possesses a virtual angle 8”’, when
added to a line of surge impedance z;, which may form the first
section of a camposite-line system.

Let the architrave impedance of the composite-line equivalent
11 be

p = Mz, sinh §, ohms £ (429)

where M is a multiplier consisting of cosine ratios, as in (415).
Then, the architrave impedance of the equivalent II, after the
addition of the load at A, Fig. 161, will be, by (425),

z, tanh 6, + a)

p"’ = Mz, sinh 8, ( = o

z. tanh 5, ohms £ (430)

Let : = tanh 6" numeric £ (431)

1

where 6” is the virtual angle of the sending-end load when applied
to the line of surge impedance z;; then

v oAfe o tanh 6, + tanh 0”)
p Mz, sinh §, ( tanh 8,

Mz, (sinh 8, + tanh 6" cosh §,) ohms £ (433)

ohms £ (432)
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and, applying (506),
"
= Mz, 5inh (a1 67) ohms Z (134
cos

These conditions are illustrated in Fig. 161 for the case already
considered. Here 6” = tanh—! (100/1,000) = 0.100336 hyp.
Formula (434) is well adapted for logarithmic or slide-rule work
in an a.c. case.

Wiy bl Ly
by +
32 2 § g
HE HE -
o o o | e c|e o
[ 30 ] "L | [ ]
1000 | g,=2 S| 04715 S| 0,05 =
A,  AA Z,=100 BC Z3=2000 DE 23=2500 F
coshd¢ oosh 8z
Ao 100 A P=2 sinh 3,- coshdz coshdp p
gl “AU1Q 2
kS 0.02260 x 10°* 8 :
A 9s x
| g
e -
. o
P'Lz -lnh(8‘+0) cosh 8¢ cosh &
4, cosh §” " cosh35 coshdp F
o 49620 0 o
- 0.020568x 10°* U -
o .
=) Sepeo(z2) .
§ § Gti
51 =
°' '

F16. 161.—Composite line of three sections loaded at the A terminal.

Impedance Loads at Each Terminal of a Composite Line.—
Applying an impedance load to each terminal of a composite
line, we may ground one terminal and lay out the position-
angle distribution up to the other. We may then use (434) in
order to determine the cantilever from the up terminal. This
cantilever will give the currents at both terminals of the system
when the impressed potential is given, and from these, the poten-
tials at the terminals of the composite line are readily found.

An example is given in Fig. 162, using the three-section com-
posite line already referred to. The line is grounded at F,,
through a terminal load of ¢ = 100 ohms. The position angle



COMPOSITE LINES 261

at A is then 1.52740 hyps. The A cantilever has an architrave
impedance of 48,620 ohms and an A leak of 0.41900 millimho.
Impedance,z, = 200 ohms at the sending end, is then added to the
A terminal. This load has a virtual angle of tanh—! (200/2,500)
= 0.08017 hyp. The cantilever at A, has then an architrave
impedance of 52,890 ohms, and an Ao leak of 0.38515 millimho.

f=}

L]

2
c‘
qg c
= g8 S =
S3s §§§ 5§ §§ g
L I TR Sla o; Sle
3’3 nyn : uln W "h [
&0 oy g <l | o>

N 0“ 0.5 l 01'1.5 0.- 2

Az, 2000 A A 2,200 BC 2,=2000 DE 23=100Q FF, zr-mon\. :

cosh 3¢ cosh3g cosh 3y,

P =2 sinh 84

- 2000 4 cosh 35 " cosh 3, ~cosh 3r F,
wwWwwiwe cosh 202061 cosh2.10084 cosh0 =48620 (=]

s =2500 sinh LE2740 - 5 Tom g * cvah 0.628¢1 * coah 010034 0 ®

5 =0,020668 |

g 0 x10°30 | x

: g

3 o

. -inh(6‘+0) cosh 30 cosh 35  cosh dr,
Ay Pz cosh §°_ cosh s cosh3p cosh3r Fo
=2500 sinh 1.00%7 cosh 2,02981  cosh 2.10084 oosh 0

oosh 0,08017  ooah 102140 cosh 0, 6291 mom'wn"’;%%

" 48820
g9,=6, 250

0.38516x10"* U

F1a. 162.—Composite line loaded at both ends and its A-end cantilever.

Alternating-current Example of Composite Line.—The follow-
ing example may illustrate the application of the foregoing
principles to an a.c. case. In Fig. 163, we have a diagrammatic
representation of a three-section composite telephone line. At
A is the generator, of angular frequency 5,000 radians per sec.
(f = 796~ ), impressed on a 5-km. section of a standard twisted-
pair telephone cable from A to B. Then from C to D there is a
250-km. overhead section of double-wire telephone line, and
finally from E to F another 5-km. of underground wire like that
between A and B. At F is a terminal load, such as a receiving set
between the wires of the circuit. The impedance of this load, at
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impressed frequency, is taken as 1,5004£70° ohms per loop; ..,
750£70° ohms per wire. It is required to find the distributions
of position angle, potential and current over the composite line,
assuming 2.020° volts applied across the lines at A; 7.e., 1.040°
volt per wire.

The linear constants of the three single lines are recorded in
Table XVI. The angle subtended by each underground line is
0.3324 + j0.2199 = 0.4793£46°.096 hyp., and that subtended

by the overhead line 1.171 + J2.785 hyp. = 1.171 + j4.375 =
4.53£75°.017 hyp.
In Fig. 164, we have at the top, the three sections. Their re-
spective single equivalent II’s are given below these. The under-
BCe—m———0km————>DFE

4 - S=I=IT F

- -—5 km—- > fe— -—5 km—-g__

Fi1a. 163.—Composite telephone circuit of central overhead section and
terminal cable sections.

ground-section II’s are clearly realizable in the laboratory. The
overhead-section 1I is not, however, realizable by ordinary simple
impedances. At A’ B"” E” F", the three II’s are joined end to
end, and adjoining leaks are merged by vector addition. The
central II, at B E”, is then replaced by its equivalent T at
B E'’. As the next step, the T at A””” F'’, which happens to be
symmetrical in this case, is replaced by its equivalent I, a'f,
with sloping pillars. Finally, the terminal leaks are merged by
vector addition, and we obtain the merger IT of the system, at
afgg. The architrave has an impedance of 1,113X103°.4 ohms,
an unrealizable value with ordinary simple impedance elements
in series. Each leak has 2.35£16°.933 millimho. The merger
IT of a three-section line calls for two I — T or T — II trans-
formations, and a merger II of an n-section line calls, in general,
for n — 1 such transformations, besides incidental auxiliary com-
putations, It is a tedious, and error-provoking process.

It is evident from this merger II, that if the composite line
were direetly grounded at F, and voltaged with 1.0£0° at A, the
received current at F would be 0.8984/103°.4 milliamp. Al-
though apparently leading the impressed e.m.f. by 103°.4, the
received current would actually lag 360° — 103°.4 = 256°.6 be-
hind it.
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The hyperbolic IT is worked out in full in Fig. 148, with the
aid of the “Chart Atlas of Complex Hyperbolic Functions."
The first step is to lay off the position angles, each of which takes

5 km. Standard Oable .Z:Okm No.10 A.W.G. Aerial Copper 5 km Standard Cable
a= oosmﬂoonm :%'a- 0004684 + 50,0171 = 0,01€12 /755017 ’a—oowrwam ""

6,=0.4793 /40, byp. | 0,-11'1+um-=1.m+:z'ss i 0.*041”&.__ =
—om+aoaw -~B'C =458 [7:, hyps DIE =0.3%24+;0.0% - F

2,=2657 \288 obms  Z,=33.7 | 14968 O " zy=2851 \250 0

A 1830 B C ,z(miasn E 188/559 F.
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F16. 164.—Successive steps in determining the merger IT of the three-section
composite line.

one line on the page, and two references to the chart. Thus,
in finding 8,, we require to find tanh &g = tanh (0.3324 +

j0-2199). The charts do not, as a rule, admit of being used to
this degree of precision, but we can readily find from Chart
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IX,, tanh (0.33 + j0.22) = 0.471£41°.5, the last digit of the size

being doubtful. We then have to find from the same chart
tanh—! (0.3703£13°.64), by entering on the rectilinear background
for 0.370£13°.6, and interpolating on the curvilinear system,
0.36 4+ 70.065 hyp.

g 5 km, Btandard Onblog gzxon.nqm AW.G. Aerial Oowerg éj 5 km, Standard (.)lsblo
FO0=0.00647 + 50,0807 4 | 4 O'=0,004884+30,01752=0, 01812 /15017 + 0 =0.08647+30.00907 X2
BOH=0.4m8 /1008  B|H 03=LIN+548B-111+i2.3 gz|50=0.408 /icios ol
S =0.3+j0a9byp.S [~ =4.58 /15017 hyps. S|s  =0.8%24+450,2189 hyps,

A Zi=m%. @380 BC 2:=3071 \HS O DE z=w61 \@s3 0 Fy

.mx
3p=0.86 + 50,065
=111+ j2.7%
3o =160 + j2.80

a,-unh"(:_: tanh ac) -mn"(::;—m x1.004 /223 ) =tanh"* (1,398 /2029 )

3 p= 0.5% + 50,686

6, = 0.5 +30.220
8, = 0.907 +30.906

3a=unh"(_:_: tanh 8,)-m"e:;—uﬂ ““ 0.4m3 /41l5) = tank™* (0.5 /le )

sh 8¢ cosh &
Py=2, sinh 3, . cond, ° mﬁ

- 50,906) Co%b (1.581+2,860)  cosh (0.3824 +30,20)
2y siah (090743 ) - - T T 0.68)" <o (0.5 + 3 0.08)
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Fra. 165.—Full computation of hyperbolic II for the three-section com-
posite line.

After establishing the position angles, we know that in any one
section, the potentials are as their sines, and the currents as their
cosines, there being no discontinuity at junctions. We start at
A, where the potential is given, and where the current is, by
(128), I, = y; coth 8, = 2.559£37°.243 milliamp.
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The architrave p’’ of the hyperbolic II, by (415), appears be-
neath 5, in Fig. 165. In the formula, there are five successive
references to chart X—~XI. The result is 1,119X103°.1, as against
1,113X103°.4 by the merger method. The discrepancy is attrib-
utable to the limits of graphic interpolation precision in the
charts. By numerical interpolation in the corresponding tables,
a closer approximation would be obtainable, at a greater expendi-
ture of time.

At the bottom of the arithmetic is the computation for the a

a s (1084 0 f ™M g

Q8O/T/ , 0Tx 98’2
A——

>
___j

g g g
a 2100 \26% 0 g
b 0.4768x 107 /2624 U o [
- 52
: 5
2 E
¢ y
g g% g 9

F16. 166.—Complete computation of the A cantilever of the three-section
composite line including the terminal load at G.

leak; namely 2.341 X 10-3£16°.87 mho. Ordinarily, the f leak
could not be found without a new distribution of position angles
from A to F; but, in this case, by symmetry, the f and a leaks are
identical.

In Fig. 166, we have the merger II extended to include the
receiving instrument between f and G. The new II, which is dis-
symmetrical, has an architrave impedance a’g of 2,100X26°4
ohms. One volt applied at a’ would, therefore, deliver a current
through the receiving instrument of 0.4763£26°.4 milliamp.
Fig. 167 gives the corresponding A cantilever by the hyperbolic-
function method. The position angles have been recast from
G to A. The final result gives an architrave impedance a’g’ of
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F16. 167.—Merger II of composite line including terminal load at G.
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2,108X26°.5 ohms, and an a’ leak admittance of 2.406/3"
millimhos. One volt at A would, therefore, send 0.4744/26°3
milliamp. through the receiving instrument, which means thst
2.0 volts across the circuit in Fig. 163 would send this same cur-
rent through the 1,500£70°-0hm instrument at F. The poten-
tials and currents at transitions are also indicated in the upper
part of Fig. 167. The discrepancy of 0.4 per cent. between the
hyperbolic and merger architraves is again attributable to the
limits of graphic interpolation in the use of charts.

Ll
- I;* l§|
:|$ 3
S8 o T
I L
c|lD 2r E
T16.4  [86.68
A 1680 \178.% @ B

F1a. 168.—Line loaded at each end and the A cantilever.

Alternating-current Case of Impedance Loads at Each Ter-
minal.—As an instance of terminal loads at each end of a line,
the case of Fig. 168 may be taken. Here the single line subtends
an angle of 8 = 1.871 + j1.835 = 1.871 + j1.168 hyps., and has
a surge impedance of 285.5X45° ohms. The motor-end load DE
has an impedance Z, = 776.4486°.55; so that it subtends a

O
virtual angle of 6’ = tanh-! (72%;§-§igfé) = tanh—! (2.719£

131°.55) = — 0.23 + j0.820 hyp. by Chart XII. Similarly, the

the virtual angle of the generator-end impedance is tanh!

71.8£82°8 _ o e _ : ,
(95 5egge) = tanh™ (0.2515£127°.8) = — 0.149 + j0.128 hyp.
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also by chart. The A cantilever of this system has therefore
by (434) an architrave impedance of

sinh (1.492+j2.116) cosh 0
" _ o —_— = e T -
p” =285.5545° X cosh(—0.149F 70.120) X cosh (= 0.23 + 70.820)
o (<]
—285.5%45° x 2:1183168°5 1040

'0.363%37°.8 7 0.9912%1°.75
1,680X173°.95 ohms.
A potential of 1.0£0° volt impressed at A, Fig. 168, would thus
send a current of 0.05952173°.95 milliamp. through the terminal
impedance at DE.

Intermediate Impedance Loads m a Composite Line.—A case
of an intermediate impedance load is represented in Fig. 169. .
A resistance of 100 ohms is introduced between the AB and CD
sections of Fig. 153. At AF,, the position angles are distributed
from F grounded, toward A. At C, the position angle is §; =
2.15892, as in Fig. 154, and Z,c = z; tanh §; = 2,000 tanh
2.15892 = 1,947.385 ohms. At B this line impedance is increased
to Z,s = 2,047.385 and the new position angle at B is

op = tanh™! (Z;_n ) hyps. £ (435)
1
panpr (BT3B o - _
= tanh-! ( 1000 ) = tanh 2.047385 = 0.534 +j § =
0.534 + j1.

The position angle then advances regularly to 5, = 2.534 + ];

The distribution of potentials and currents now commences
from some point where either the potential or the current is
given. The potentials from this point follow the sines and the
currents the cosines of the position angles to the nearest transi-
tions. At transitions, there is no change in line current, and
also no change in potential, except at BC, where there is an
Ohm’s law vector drop from B to C.

The A cantilever has its architrave determined by (415).
That is, :

p = 1,000 sinh (2.534 +j

7) " cosh 0.65892 —

1r) . _cosh 2.15892 cosh 0.5
cosh (0.534 +iy

o ot

45,766.5 ohins,
and » = 1/p = 0.02185 X 10~2 mho.
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The line admittance at A is Y,4 = y: coth §, = 10~3 X coth
(2.534 + j1) = 10~2 X tanh 2.534 = 0.98749 X 10—2 mho. Suk
tracting » from Y 4, we have the A leak admittance g, = 0.9656¢
X 10~ mho. One volt applied at A would thus deliver 0.9874
milliamp. to the system, and 0.02185 milliamp. to ground at F.

If the complete equivalent IT of the system is desired, we must

6,-2 0,=15 0,=0.5
Ae ! B co—t1 _op R0 F
2, = 10000 Z,= 20000 Z3=25000
e T3
+
+ i 3l “ o
13 al & si3 3
| eq il ] .a' l. LN
i" ol o ¢o=¢o 05:
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g
§ ; e e
o ~§ §g 8
3 o S P |
? v s X l- []
~ « 2 0w
AL =2 Bl10Q lc 6:=15 D E F,
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i 3
]
A 45766.5 0 R
0.02185x10™3 0
D o
-3 - "
» 8 g ?
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F16. 169.—Three-section composite line with series intermediate load.

gr.ound 4 at A, and develop the position angles toward Fs,
Fig. 169. At B, the angle is 85 = 2.0 and Z,s = z, tanh & =
1,000 tanh 2 = 964.026 ohms, as shown. At C, this is increased

to 1,064.026. The position angle §c = tanh—! ('Zz"9> = tanh™!
2

1,064.026
2000 ) = tanh=!0.532013 = 0.59295 hyp. From this point
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on to F, the position angles advance in the manner already de-
scribed. Potentials now follow sines and currents cosines, start-
ing from some point where either the potential or the current
is known. No discontinuities are made at transitions, except
at B-C, where an Ohm’s law vector drop occurs.

The F cantilever now follows, by (418),

. cosh 2.09295 cosh 2.0
p = 2,500 sinh 1.53581 X _ ch 1.03531 < cosh 0.59295 —
45,766.5 ohms,
and » = 1/p = 0.02185 X 102 mho. This provides a check
on the computation, since p’’ must have the same value from
either terminal of the system. The line admittance Y, =
0.4 X 10~? coth 1.53531 = 0.4 X 10~2 X 1.0973 = 0.43892 X
103 mho. The F leak is thus 0.41707 X 10—* mho.

4 BC DE  » 42470
Al ng S
A B 100l DE . p sste60
4 BC DA E— F 456300
4 BC DE F 1% F, s51920

Fi1a. 170.—Effect of position of a series load in a composite line upon the
architrave resistance.

The above process indicates that when the position angles
have been adjusted, to make allowance for an intermediate im-
pedance load, the architrave of the equivalent IT is obtained
by the same formula (415) or (418), as though no intermediate
load had been introduced.

The effect of a given impedance load on the architrave im-
pedance of the system will, in general, differ at different positions
of insertion. For the particular case of the three sections here
discussed, Fig. 170 shows the effects of introducing a resistance
of 100 ohms at different points. It will be seen that the system
architrave impedance varies from 45,680 to 48,620 ohms.

In a.c. cases, such differences may be surprisingly large.

Terminal Leak Loads.—It is obvious that if a leak be applied
at one terminal of a composite-line system, it will have no effect
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on the system if that terminal is grounded, and the distribution
of position angles toward the opposite terminal will be the same
as before the leak was applied. If a terminal impedance to
ground is added after applying the leak to the terminal, the leak
will serve to modify the value of the terminal impedance by
shunting it.

If the leak be applied at the up terminal, or generator terminal,
then a given voltage applied to that terminal will produce the
same distribution of potential and current over the line as before
the load was applied, except that a current to ground will flow
through the leak by Ohm’'s law.

Similarly, if terminal leaks are applied simultaneously at
both ends of the line, the changes produced in the system will
be of a simple and self-evident character. The equivalent I
of the system will be unchanged in architrave; but the terminal
leaks will be respectively increased by the values of the terminal
leak loads.

Intermediate Leak Loads.—A casual intermediate leak in s
composite line may always be assumed to be applied at a junc-
tion between sections; because, if it should actually occur within
a single section, that section may be regarded as divided intotwo
single lines, with a junction at the leak.

An example of an intermediate leak load is offered in Fig. 171.
Here a leak of 0.5 millimho is applied at junction DE. If the
F, terminal be grounded, position angles may be distributed
toward A. At E, 6z = 0.5, Z,z = 23 tanh §z = 2,500 tanh
0.5 = 1,155.29 ohms. Converting this into an admittance
Y, = ys coth 6z = 0.86558 X 10~2 mho. To this line admittance
we add the admittance of the leak 0.5 X 10-2, making Y,z =
1.36558 X 10-3. Consequently, the impedance load at D on the
section CD is Z,z = 1/Y,z = 732.289 ohms. The position
angle at D is thus
5 = tanh-! (Zz‘;') = tanh-! (7320(2)39) = tanh~1 0.361145 =

0.38396 hyp.
The remaining position angles to A, are worked out in the usual
way. The potentials and currents are then distributed in the
manner previously described, without discontinuities at transi-
tions; except that, at D, the line current suddenly drops by the
amount supplied through the leak.

If we seek the A cantilever, the architrave impedance is
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cosh éc cosh és = Zs
cosh és coshép Zp
cosh 8; coshée Y,

cosh 85 cosh op Y,z ohms £ (437)

1,000 sin (258185 + j5) x —coon 188396

p = z,8inh §,- ohms £ (436)

2, sinh &4

2 R
cosh (0.58135 +j 2)
cosh 0.5 1,155.29 _
cosh 038396 < 732.29 — 00,240 ohms.
A 6,=2 B ¢ 6s=15 D E 6s~05 F
Z, = 1000 Zg= 2000 Z3=250002
1 ﬁ.lu:
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g I
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F1a. 171.—Three-section composite line with leak load.

The A leak is found in the ordinary way (419).

It will be observed that in addition to the usual cosine ratios
appearing in the formula for the architrave, we have to introduce
an additional ratio of either line impedances, or line admittances,

on each side of the leak load.
18
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To complete the equivalent II, we ground at A, develop
position angles toward F, and take the leak into account in the
same way as above. The architrave impedance is then

— 2y sinh 8, - CO8h0p ., coshds  Zgp y
p = z3sinh & cosh 3y cosh o Z.s ohms Z (43§

= 60,240 ohms, as before.
The F leak is then worked out regularly.

A P, = 24558.55 D E P, =1302.738 0 F
o n=000mBx10"0 5 ve=0.767614 x 10 O 5
Cl» o by b
g2 2 2 2
g2 2 7 |e £
al: HEL :
S 3 ]
c SY °c °
\_V_J
g=0674n46x10"°
A P=AUTQ F
0.022600 x10°* §
° P
Z B
ol 2
2 g
§ -
. o
o
”
A P=p 4+ P
" 60240 = 44247 + 15898 <
< = /8|7
2 EY AL
x ~f
x A ™
g LRV E
s 3 ~ ) -
(=) Ed o
k_ﬂ_-‘/ ~
0.972018 x10°% 0.58911x10°*

Fio. 172.—Development of equivalent II of coniposiw line having a leak
load v at the junction DE.

It will be observed on comparing equivalent »’s in Figs. 155
and 171, that the effect of the intermediate leak load has been
to increase the architrave impedance, and also each pillar leak.
It may in fact be easily shown that if, as in Fig. 172, a composite
line AF is divided into two sections AD, EF, each with its equiva-
lent II as shown, then the merging of these two sections with
their combined leak g at DE, gives rise to the equivalent II,
AF with architrave p. The effect of an added leak at DE of v
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mhos 1s to increase the architrave by an amount ;;Y;’ ohms, and to

distribute increments to the terminal leaks in direct proportion
to the architrave admittances v, and vs. In this casey = 0.5 X 1032
v1 = 0.0407273 X 10~* and »v; = 0.767614 X 10-3. The incre-

0.5 X102

ment in p is thus 0.31263 % 10~ = 15,993 ohms. Also va/v; =

18.84, and this is the ratio of the increments due to the leak

load ly IR0 1es4
oad, namely , \oco0n = 18.84.

Bifurcating Composite Lines.—Considering the composite
line in Fig. 171, with its leak load at D, it is evident that this

F1c. 173.—Bifurcated composite line.

corresponds to a case of a composite line bifurcating at D, as
in Fig. 173. The branch D@ is grounded at G. Its surge resist-
ance may be, say, 4,000 ohms, in which case its line angle must
be 0.54931 hyp. Its line admittance at D will be 0.25 X 103
coth 0.54931 = 0.5 X 10~* mho. Consequently, a bifurcation
in a composite line may be dealt with, either by regarding the
two branches DF and DG as constituting jointly a terminal load
at D, and distributing the position angles over the system on
that basis; or, one branch, such as DG, may be regarded as a
casual leak, at the junction DE of the composite line AF.

There is thus no difficulty theoretically in dealing with any
system of composite lines, consisting of a generator end, a main
section leading therefrom, and any number of bifurcations
or successive ramifications proceeding from this or from its
branches. Each branch is assigned a definite terminal load,
which is zero if that branch is grounded, and infinity if it is
freed. Volt-ampere-wattmeter measurements, in the general
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case, fix the values of the terminal loads. The line admittane
or impedance of each branch is then determinable at the point
where it joins the supply main. Any tree system of maing,
therefore, possesses its natural distribution of position angles,
and comes under the domain of our hyperbolic theory.

Tabulation of Changes in Architrave Formula with Casul
Loads.—The following table, which may be useful for referenc,
contains a summary of the changes made in architrave impedance
by the casual loads already considered.

TasLE XVII
. b - |
Nature of load Change 'P:::ld“‘i:ﬂl g)l&;d’mto the | foI’Nl:l'dl
Terminal impedance: l
Atdownend A............. cosh 0/cosh 84 | 422)
Atupend A............... Z940/Zga = (Zga + 0)/Zga | (423)
Atupend A............... also sinh (84 + 6’’)/cosh ¢’ (434)
|
Intermediate impedance. . .. ... None !
|
Terminal leak: I
Atdownend............... None |
Atupend.................. None |
. ! Zyx Yo | (436)and
Intermediate leak at D-E. ..... : Zos = Y, | (437)

Plurality of Loads in a Composite Line.—It appears that the
corrections introduced into the architrave impedance p, for
casual loads, are mutually independent. That is to say, when
several casual loads occur simultaneously, in a composite system,
whether they are of the same kind, or of different kinds, they
each call for their independent individual corrections.

An example of a three-section composite line, with three
casual loads in Fig. 174. Here the same three sections AB, CD,
EF as before, have an intermediate impedance load of 100 ohms
at BC, a terminal impedance load of 200 ohms at GH, and a leak
load at FG. This leak is virtually an intermediate leak.

Referring to Table XVII, we see that no change in the archi-
trave formula is introduced by the BC load, and the leak at FG
introduces one extra impedance ratio. When the H end is
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down and grounded, the terminal impedance GH, introduces one
extra cosine ratio. When the H end is up, the same terminal
impedance introduces one extra resistance ratio Z,x/Zq.

Thus grounding at H,, the architrave impedance is

. cosh 8c cosh 6, cosh 0 Zy
= vOsil Oc — Z (439
p = zisinh 3. cosh 55 cosh 5p cosh or Z,» ohmea (439)

0,=2 0:=1.5 03=0.5
A B C
Z, = 100002 Ze= 2000 Z,= 250002
[
F g i3 2k £
] 1
i§ < I sis o3 3
1
A‘i 6=2 BIWQIic 0.-15 DiE chﬂﬂ.
2z, = 1000 z. = 20000 26000 |y
s|5
§« o
N
8 o b ]
. 8 i91 4
ol 13 2 4
!g ol ie Ni.: - -
Al hi=2 Bliw0!c 0,=1.5 pir rlg¥0g
’l Z, = 10000 z,= 20000 20002
(=D
ga
fou
S S0 "
oass x10° 0 |2
o =]
sla Sle
Rk 8|
§la HE
= <
2 ys
G G

F16. 174.—Three-section composite line with one leak load, one intermediate
series load and one terminal series load.

= 1,000 sinh (2.5306 +3j 2) x — cosh 2.27648
cosh (0 5306 + 5 )
cosh 0.577076 x _.cosh0 200
cosh 0.77648 < cosh 0.077076 < 192.31
4.92248  1.17118 1 200
= 1,000 X j6.32082 X - 75585 ¥ 131601 ¥ 1.00297 ¥ 192.31

= 51,615 ohms.
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Again, grounding at A, the architrave impedance is

= Zon cosh &  cosh 8s Zer 40;

"~ Zy "z sinh & - cosh 8 coshéc Z, ohms £ (44
1,765.14 cosh 2.09295

= 2,978.32 X 2,500 X sinh 1.53531 X cosh 1.03531

_cosh 2.0, 22783
cosh 0.59295 " 1,565.14
411606 _ 3.76220 _ 2,2783
= 0.7760 X 2,500 X 2.21368 X 170555 X 1.18101 < 1,565.14

= 51, 610 ohms.

o, 0, 2, 2y 0, 6, P

A 2z, BC, 23 D, ?% E, zz FG 2z, H, I

z
0| 03 zl ;}
Ay 2z, BC: 2

1

......

"1,

F:'G:

«mmﬁ
E’F
AN
a»
e

0,
A Z, By C,

F16. 175.—Treatment of inductively connected composite lines.

Case of an Alternating-current Transformer Inserted in Com-
posite Line.—In Fig. 175, we have a composite line AB, CD con-
neeted inductively through a transformer with another composite
line EF, GH grounded at H, through a terminal load ¢ ohms.
The four single lines have the respective angles and surge im-
pedances 6y, 02, 63, 64 and 21, 22, 23, 2.. The transformer may be
assumed to have a voltage ratio of n, in the sense that after
deducting the primary IZ drop, 1 volt of internally induced pri-
mary c.e.m.f. will be associated with n volts in the secondary
winding. Both the primary and secondary windings have im-
pedances comprising the effective resistance r, and the effective
self-reactance jx ohms. The self-reactance is that reactance
which is due to magnetic flux not linked with the other winding.
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From this standpoint, a transformer contains a pure resistance-
less mutual reactance and a pair of external impedances, one in
each circuit.

We may next assume that the transformer is changed to a
level transformer, with ratio 1, and with equal numbers of mutual
turns in primary and secondary winding. The levelling may
be imagined as effected to either primary or secondary voltage.
We may assume, as in Fig. 175, that the primary winding re-
mains unchanged, but the secondary winding is levelled to it.
All impedances in the secondary system must now be divided
by n?, and all admittances multiplied by n?. This condition is
indicated at Ei, F,, G;, H:. The two level-voltage composite
systems may now be joined conductively at F, at a leak v, which
has such admittance as will carry the observed exciting current
of the transformer when a corresponding exciting voltage is
applied at D. The composite system A; — I; is now a four-
section composite line, with a terminal impedance of ¢/n? ohms £
at HI, an intermediate impedance D;E;, and a leak v in the
same. The section angles 63, 6,, have not been altered by the
ideal process described.

After the position angles have been assigned to the modified
through composite line A;l;, the potentials and currents may be
worked out in the usual way. The resulting potentials are then
multiplied by n, between D,, and I,, to derive the actual poten-
tials with the actual unlevel transformer, and the resulting cur-
rents are likewise divided by 7, between D, and I,. The vector
powers on the imaginary level system will agree with the vector
powers at corresponding points of the actual system.*

If more than one transformer link occurs in the system, the
procedure is the same. There will then be three or more voltage
levels, any one of which may be selected as reference level, and
the others reduced thereto, by the proper transformation ratios.
Thus, if there is a step-up transformer at one end of a section, and
a similar step-down transformer at the other, then either the
high-voltage or low-voltage level may be accepted as the refer-

* The Application of Hyperbolic Functions to Electrical Engineering
Problems,” p. 157.

C. P. SteEINMETZ, “ Theory and Calculation of Alternating-current Phe-
nomena,” New York, 1897.

A. E. KENNELLY, “On the Predetermination of the Regulation of Alter-
nating-current Transformers,” Electrical World, N. Y., vol. xxxiv, p. 343,
Sept. 2, 1899.
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ence level, in constructing the conductive system. Ordinariy.
the low-voltage level is the more convenient. The levelling
process introduces no change into the angles which the various
sections subtend. It changes only the surge impedances along
with all the impedances and admittances of the same circuit.
If there were negligible impedance and negligible losses in the
transformers, their effect would be confined arithmetically to
changing the surge impedances of the sections affected.
Composite-line Tests in the Laboratory.—The following case
is taken from experimental tests, at 60~, of a two-section com-
posite line consisting of a telephonic resistance-condensance line.
like that indicated in Figs. 122 and 127, joined to part of the
line specified* in Table XIII. The connections are indicated in
Fig. 176. At the impressed frequency of 60.5~, the artificial
telephone line AB subtended 0.654 + j0.4068 hyp., with a

surge impedance of 1,365N44°.02 ohms: while the artificial power
line CD subtended 0.127 + j1.008 hyp., with a surge impedance

of 347.63.°92 ohms. The equivalent IT of each section and the
equivalent IT of the composite line AD are also shown in Fig.
176. The composite line equivalent II has an architrave of
535£107°.5 ohms, and two dissymmetrical leaks, one of them
having a size more than three times that of the other, the slopes
also being very different. The composite line was loaded at D
with 1,000£0° ohms.

The results of the Drysdale potentiometer tests, reduced to
100£0° volts at A, appear in Fig. 177. The curves indicate
the values of potential and current over the conjugate smooth
line, while the circles represent the observations at selected
junctions along the composite artificial line. It will be seen that
the voltage falls along a nearly straight line over the artificial
telephone line, from 100£0° at A, to 11.07X14°.76 at B. It
then rises to 23.21X103°.44 at D.

Fig. 178, is a schematic representation of reflected voltage
waves over the composite line, assuming that an outgoing wave
of 100.£0° volts is suddenly launched from A without any ac-
companying splash or oscillatory disturbance. The coefficients
used are given in Table XVIII, based on (360), (410), (411),
(412), and (413).

* These tests are recorded in theses at the Massachusetts Institute of
Technology by Messks. C. W. WHiTALL, and F. W. McKowN, June, 1916.
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Thus, the first outgoing wave from A, in Fig. 178, arrives at B
in the condition 52.00X36°.61 (line 5, column 1, Table XVIII),
or 41.74 — j31.01 volts. At junction BC this wave splits, the
transmitted portion is 21.96X4°.33, and the reflected portion
35.43£124°.06. This reflected portion returns to A under

Artificlal Telephone Line Artificial Aerial Power Line
A 0,=064 + jo.1 p ¢ 0:=0121 + ;LB D
te—-—45-km — - — (24 miles)— —spe——1200-km.— —( 70 miles)--»
L I%
2= 1366 ;“’.ﬂ za=316 \3m

A 1 [£20 B C:_ x0/s10 D

1 1
D D D (=)
| g e 3
g 3 K
A 5 B B
x x "l x
8 g & #
P o S =

A, 538 [101.5 O

24572107 /616 U

Artificial Aerial Power Line Artificial Telophone Line

, 61 = 0.127 4 51.008 B¢’ 62 = 0.654 + 0.901 D
He-—1200 km.— - —( 50 miles)- - —sre— —45 km——( 25 miles)—»

ST T T P

F1a. 176.—Connections of composite artificial line in laboratory test.

’

attenuation, then to B, again is partially reflected back to 4, and
8o on, for four ABBA return trips, before it is exhausted to
below 0.1 volt in size, after which it is ignored in the schedule.



282

ARTIFICIAL ELECTRIC LINES

®E0F + axo =79

|

LTS + SIS0
_‘sTl" €+ 00

-}
3
19

g

608°T £ + wHE0 L

6L + HLro
7'akH T E+wr0 =29 | O
7akH DFFD C+ 00000 = @ )

y T T &SE0f 4+ wwo |

| 7-acu @TOE + oo - 7@ T

675

525 600

‘dury 80°0

PRT 0

200

02

90°0
30\
OF

$0°0
001
.09

100 800 200 100 0
08 09 o (1 0
:08 <001 Buissey

¢ and current over compotsite artificial line and computed curves for conjugate

Centers of small circles represent obsorved values,

smooth line,

Fi1u. 177.—Observed distributions of volta,






ARTIFICIAL ELECTRIC LINES

282

*HON[BA POAJON(O Jussaldid RI[AIID [[VIUE JO SI1DJUN) "OUI] YIOOUIR ) .
0juBnfuod 10§ BaAIND pMNdUINd PUV LUl [BRYIE 031Rod WD JDAC JUIND puw wwz.:g JO SUOHNQUIKIP PAAIINYO—'LLT V1A

O woyy sop 0 Y wos sony
0L 99 009 989 00y A 008 @ M oL ;] ] 03 ot 44 8 4 0
T T T T )
.u_. 0,8 _ ._u e o o _o N
° —O3moA g s B 8§ § § e
g S G S
+ g3l 5§ Mt ¢ B m w g 4
. . £d oo o _ _n _ q|+.o ]
& T RE TR N 55
BBl EE | B | Bl .
213 213 — e : : —z=2ig88
Imm | | 5|77
™~
i
53 _ T £88
NS
#u/ 1 zmwm
7
N >

(9]
Q«;
90°0
O

gi

i

|

|
200
02

,0

dwy 80°0

peP!




COMPOSITE LINES 283

Fig. 178 recognizes 40 successive vector increments at B, 32
such increments at C, and 29 at D. The vector sums of these
various series appear at the foot of each column. The vector
sum at B is 11.33X13°.73 volts, and at C 11.17<16°.37. These
sums differ because of the neglect of wave tailings below 0.1
volt in size. If the summations were extended, without mistakes,
to a sufficiently great number of terms and wave increments,
they would agree with each other, and with the steady-state
hyperbolic function value 11.07X14°.76 volts, as shown below
on the lowest line.

Fig. 179 is a similar schedule of current waves, and of their
descendants by rupture at junctions. Here 29 increments are
included at A, 38 at B, 50 at C and 49 at D, before extinction
to below 0.1 milliamp. The vector sums are compared with
the steady-state hyperbolic values on the two lowest lines of
the schedule.

It is clear from Figs. 178 and 179 that if we had to depend on
vector summation of reflected and transmitted waves for arriving
at final steady states, as in these schedules, the work would
frequently be prohibitively laborious. The hyperbolic-function
method, on the other hand, by virtually summing up to infinity all
these series of vector increments, is a most effective labor-saving
device.

Time Interval of a Line.—The apparent velocity of transmis-
sion over an artificial line of hyperbolic angle 6; + j03 and
representing L km. (or miles) of actual conjugate-line length
varies somewhat with the frequency, and is by (352),
@ _Lw km.
og - ‘N sec.

(441)
and the number of transits per second made by a wave at this
velocity in either direction over the line is

w

n=-: numeric  (442)
Os

while the time consumed in any transit in either direction is

1 6
T="="3 sec. (443)
n  w
This may be called the time interval of an a.c. real or artificial
line, for the impressed angular frequency w.
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In the last three formulas, w is expressed in radians per second,
and 6y in circular radians; but if 6y is expressed in circular quad-
rants,  may be correspondingly expressed in quadrants per sec-
ond, where
o, = 4f quadrants (44

sec.

Thus, the artificial power line CD, 1,200 km. long, subtending
an angle of 0.1273 + j1.008 hyps., and the impressed frequency
being 60.5 ~, the quadrantal angular velocity would be w, = 242.
Hence n = 242/1.008 = 240 single transits per second, T =
1.008/242 = 0.00416 second, and v = 1200 X 240 = 288000
km./sec.

It is, therefore, evident that all of the vector increments sched-
uled in Figs. 178 and 179 are delivered in less than 11 sec. after
closing the switch at the generator end A of this composite line.
The smaller the losses in the sections, and the higher the attenua-
tion coefficient size ¢, the more numerous these successive
increments must be, in order to reach exhaustion below assigned
limits of voltage and current. On the other hand, either on an
infinite line, or on a finite line with very great attenuation, the
first wave will be the only one to consider in determining the
steady state. .

Fig. 180 shows the results of the tests on the composite line
when the power line was connected to the generator and the
telephone line loaded with 1,000£0°, ohms as at A’D’, in Fig. 176.
Here the voltage rises from 100£0° volts at 4’,to 294X112°.9 volts
at B’, and then falls nearly on a straight line to 129.9X128°.6 volts
at D. As in Fig. 177, the curves follow the computed values
over the conjugate smooth line and the circles mark the observed
values on the artificial line.

Estimating Composite-line Attenuation in Miles.—It has been
the custom among telephone engineers to state and compare
degrees of attenuation in the sizes of their transmitted telephonic
alternating currents in ‘“miles of standard twisted-pair cable.”
This procedure, while very useful as a first step to engineering
accuracy, is quantitatively inferior to the use of architrave or
receiving-end impedance. A telephone line, single or composite,
becomes commercially unserviceable when its architrave impe-
dance, including that of the receiving terminal apparatus, exceeds
certain values at certain frequencies. It is not yet, however,
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accurately known what the minimum number of defining fre-
quencies is, or what the limiting impedances are at those fre-
quencies. The “mile” is by comparison with the ‘“architrave
ohm” a mere makeshift. In the first place, its effect is not in
simple arithmetical progression, but in geometrical progression.
Although the same percentage is lost by normal attenuation in
each mile, the actual loss is greater in the first mile than in a
more distant mile, which gives an element of perplexity to esti-
mates based on length. Again, the “reflection losses’ at the
junctions of a composite line, when stated in equivalent miles of
standard cable, ignore the cumulative effects of such transi-
tions. It would be hopelessly complicated to classify and tabu-
late with precision, all the necessary corrections in such reflec-
tion losses; whereas the architrave impedance of the equivalent
II or cantilever is capable of giving the correct value at once.



CHAPTER XV

QUARTER-WAVE AND HALF-WAVE LINES

If an a.c. line has quarter-wave length to a given frequency, it
follows that its hyperbolic angle is then expressible in the form

by =01+j5=10+j1 hyps. £ (44

When such a line is freed at the motor end, we know that the
ratio of the generator-end to motor-end voltage, at the same
frequency, is, by (101) or (113),

Va
Vs
On a line of small transmission losses and low attenuation, the
real quantity 6, may be much less than unity, in which case
sinh 6, & 6,, and the A/B voltage ratio on the quarter-wave line
is very nearly

= cosh 6 = cosh (6, + j ") = j sinh 6, numeric £ (446)
2

.K‘ ©
Vs~
or the voltage at A is to that at B in the quadrature ratio of 6,.
Such a line develops what is commonly called a large Ferranti
effect at no load. '
Similarly, if this quarter-wave line is shorted or grounded at
the far end, we have, by (111),

J61 numeric £ (447)

cosh (6, + j!
Ta_ coshbw _ 7 —(A 2 ) = jsinh6; numeric Z (448)

I~ cosh0 1
which is the same ratio as in (446), or the ratio of currents at
generator and motor ends (grounded) are approximately in the
quadrature ratio of 6,.

An approximate particular case is presented in Fig. 142, where
a line of 1.405£69°.7 = 0.487 + j1.318 = 0.487 + j0.839 hyp.
This line had only 83.9 per cent. of a quadrant or quarter-wave
length, but its observed free-end voltage ratio was about 1.75;
or V,/Vs = 0.57, and sinh 0.487 = 0.506.

288
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Similarly a quarter-wave line whose angle was 0.1 + j1 would

have an A/B voltage ratio of approximately 0.1 or B/A voltage
ratio of 10. In power transmission at fundamental frequencies
of 60~ or less, lines are hardly ever sufficiently long to reach
quarter-wave length; so that this large resonant quarter-wave
rise of potential on open circuit was computed* before it was
even observed on artificial lines in the laboratory.

An experimental test of this resonant rise was madetf on the
laboratory artificial line of Table XIV with the connections shown
in Fig. 181. The line had a length of 240 miles (386 km.)
corresponding to 500,000 circ. mils or 250 sq. mm. cross-section,

Miles

'EEFEEEEERE
s E = g 8 8 8 &
S 5 8 2 s o

.................................

F1a. 181.—Connections for quarter-wave line tests.

in eight sections of 30 miles (48.3 km.) each. In order to make
this a quarter-wave line, the impressed frequency was raised to
189~. The data concerning the line at this frequency are given
- in Table XIX. The angle subtended by the line was then found
to be 1.5712/88.2 = 0.0493 + j1.5706 = 0.0493 + j1 hyp. Ac-

cording to (447), the ratio of home to far free-end potential
should be 0.0493, with a resonant-rise ratio of 1/0.0493 = 20.28.
This was in fact observed within the limits of experimental
error. The dots in Fig. 182 indicate observations and the curve
connects the computed corresponding values. Table XIX gives

* “Resonance in Alternating-current Lines,” by E. J. Houston and
A. E. KexNELLy, Trans. A. 1. E. E.; April, 1895.

““The Influence of Frequency on the Equivalent Circuits of Alternat-
ing-current Transmission Lines,” by A. E. KenNeLLy, Electrical World,
Jan. 21, 1909.

“The Application of Hyperbolic Functions to Electrical Engineering
Problems,” Chapter VII.

t “Resonance Tests of a Long Transmission Line,” by A. E. KENNELLY
and HaroLp PENDER, Electrical World, Aug. 8, 1914.

19
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the observations at junctions and their position angles. In this
case, therefore, 1,000 volts applied at the generator end between
any pair of the three conjugate smooth-line conductors, at 189~,
would produce more than 20,000 volts at the free ends 240 miles
(386 km.) distant. A corresponding current ratio was also
measured with the line grounded at the distant end, in accord-
ance with (448).

TaBLE XIX.—VOLTAGES AT SECTION JUNCTIONS OF QUARTER-WAVE
ARTIFICIAL LINE FREED AT FAR END

Position angle Potential Vp
Position 8p hyps. ' Cosh &, — - - - -
¢ with B grounded by chart | Computed, Observed,
% | volts l volts
B } 0 1.000 £ 0°.0 | 1,044 <90°.0 1,033
1 0.1964/88°.2 0.98 £ 0°.10 1,023 <89°.9 . 1,015
2 0.393 £88°.2 0.924 £ 0°.25 965 <89°.75 960
3 0.589 /88°.2 0.832 £ 0°.75 869 <89°.25 860
4 ' 0.786 «£88°.2 0.708 £ 1°.3 739 <88°.7 ' 735
5 i 0.982 £88°.2 0.555 £ 2°.7 579 <87°.3 559
6 1.178 £88°.2 0.383 £ 5°.3 400 <84°.5 | 397
7 1.375 £88°.2 0.200 Z11°.5 209 <78°.5 | 211
A 1.571 £88°.2 0.0493£90°.0 51.5X 0°.0 |5].5V0°

In power-transmission practice, there is at present no reason
for fearing the results of any such large resonant rise of potential,
partly because of the great length of line necessary, at 25~ or
even at 60~, to approximate quarter-wave conditions, and
partly because expedients are available for keeping down the
motor-end voltage at light load, should it rise seriously. This
may be done by means of a synchronous-motor reactance at
the far end, or of inductive reactances applied at points along
the line. It may be expected, however, that harmonic frequen-
cies in the impressed voltage wave, on a relatively short line,
may happen to excite quarter-wave resonance, and so produce,
by perpendicular summation, a relatively large rise at the distant
free end. Thus, a 5 per cent. harmonic, multiplied twenty-fold
by accidental quarter-wave resonance, would produce a 100
per cent. harmonic component at the distant open end, which.
by (395), would give rise to 41.4 per cent. increase in local r.m.s.
voltage, neglecting any normal rise in voltage due to the fundas-
mental frequency alone.
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Three-quarter, five-quarter and odd-quarter wave lines, in
general, give rise to resonant free-end voltages of the same
general character as those on quarter-wave lines, but ordinarily
much less marked in size.

Half-wave Lines.—On the other hand, half-wave, whole-wave
and even-quarter wave lines generally, are characterized by

Miles from A
0 30 60 90 120 150 180 210 240

1000 //‘/
o /

/

1100

Volts
g
N

100/*

0
4 gect. TJunct 8 5 4 3 2 1 B

F16. 182.—Theoretical curve of voltage along conjugate smooth line and
observed values at artificial-line junctions.

comparative uniformity between the potentials at their ter-
minals.* A half-wave line has an angle 6,

0y = 6, + jr = 6, + j2 hyps. £ (449)
and when freed at B, the A/B potential ratio is, by (111),

* “An Artificial Transmission Line with Adjustable Line Constants,,
by C. E. MaGNussos and S. R. BurBask, Proc. A. L. E. E,, Sept. 5, 1916.
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"= -—————Z>"- =cosh 0y = — cosh 8 numeric (1)

When 6, is less than 0.2,
cosh 6, 21+ 6, numeric (451)

so that for half-wave lines of very small attenuation,

Va ® —(146)= (l + 6:)£180° numeric Z (453
4

B
or V, is greater in size than V5,

Similarly, if a half-wave line is grounded or shorted at the
motor end B, the currents at A and B have, by (111), the ratio

I, _ cosh 6y, _ cosh (8, + jr)

Ip cosh 0 1

= — cosh 6, = cosh 6,<180°
numeric (453)

or in the case of small real attenuation with cosh 6, £ 1 + 4,
the currents at the two ends of the line will have opposite phases
but nearly the same strength.*

General Remarks Concerning Voltage and Current Ratios on
Single Lines.—It follows from (99) and (109) that if a single
uniform line of any length or number of waves, is freed at the
motor end, and the A/B voltage ratio under a given impressed
frequency is denoted by the complex number N, then when the
same line is shorted or grounded directly at the motor end, the
A/B current ratio under the same frequency must also be N,
because, while the A/B voltage ratio is a sine ratio, yet because
the open end virtually adds an imaginary quadrant to the posi-
tion angles throughout, this ratio becomes virtually a cosine
ratio, similar to the A/B current ratio.

As an example to illustrate the above relations, we may con-
sider the case of the smooth line referred to in Chapter XI,
having a linear hyperbolic angle of a = 0.0025 + j0.01 and &
surge impedance of zo = 400N8° ohms. This 800-km. hne, when
freed at the motor end B and voltaged at the generator end

*“The Propagation of Electric Energy by Standing and Traveling

Waves, Experimental Test of an Artificial Transmission Line,” by JorN
F. H. DoucLas, Electrical World, Aug. 10, 1912,
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with 1.0£0° volts, develops the distribution of position angles,
potentials and currents shown in Table XX and indicated to
polar coérdinates in Fig. 183. Referring to the table, the first
column indicates positions along the line, with their correspond-
ing distances from A in the second column. The third column
gives the position angles of those positions. Column IV gives

F1c. 183.—Graphs of potential and current along line of § = 2 + j8 and
2o = 400<8° grounded at B.

the sines of the position angles, from pages 90 to 105 of the
“Tables of Complex Hyperbolic Functions.” The potentials
in column V are in direct proportion to the sines of column IV,
starting with V, = 1.020°. Column VI gives the cosines of
the position angles from pages 106 to 121 of the book of tables.
The currents in column VII are directly proportional to the
cosines in column VI, starting with I, = V,/(z tanh §,) amp.
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Because all the position angles have round numbers, their sines
and cosines can be taken directly from the tables, to five decimal
places, by direct inspection. In more general cases, either
numerical interpolation would be required for any high degree
of precision; or the chart atlas could be used for swift graphical
interpolation of lesser precision.*

F1a. 184.—Graphs of potential and current along line of 8§ = 2 4 ;8 and z, = 400°
when freed at B.

In Fig. 183, the heavy line is the potential graph; while the
broken line is the current graph. The current leads the potential

* It may be noted that when, as in the case considered, the potential or
current distribution extends over a considerable range of circular angle or
phase displacement, the points along the line at which the position angles
are quadrantal, or have an integral number of quadrants in the imaginary,
can always be found, and at these points the sines or cosines are always
obtainable, from tables of real hyperbolic functions, to at least five places
of decimals.
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over considerable portions of the line. Both the potential and
current curves describe two complete revolutions in phase; but
the difference of phase between them is not constant.

In Table XXI and Fig. 184, the same line is considered as
freed at the B end, and voltaged at A with 1.0£0° volts. The
table is prepared in the same manner as its predecessor No. XX.
The position angles of Table XXI exceed the corresponding
position angles of Table XX by one imaginary quadrant, since

the free end adds j g, or j1, to all the position angles. It will be

seen on comparing the two tables, that the sizes of the sines in

11 : 1| H | T
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! | I |
1 = = = L Bt 2 3 Waves
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F1a. 185.—Sizes of potentials and currents along smooth line of § = 2 4 j8
and 2, = 400X8° when grounded at B and subjected at A to 1.0£0° volt.

one are the same as those of the corresponding cosines in the
other; or, from (113) and (114),
. sinh (a + ];) l = : cosh a numeric (454)

[ ! I | .
and + cosh (a + J2) o= l sinh a l numeric (455)

Consequently, the relative sizes of the currents along the line
to ground are identical with the relative sizes of the potentials
along the line freed, and reciprocally. The same relation can
be observed in Fig. 184, which gives the graphs of potential and
current along the line, and which may he compared with Fig.
83 for this purpose.
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Figs. 185 and 186 are corresponding “size-distance’’ diagrams
of voltage and current for the same line, grounded and freed at
B, respectively. Referring to Fig. 185, the continuous line
Vs . . . Vofollows the size of potential along the line from 1 to
0; while the broken line I . . . I, follows the size of the current
from 2.59 to 0.689 milliamp. The abscissas are marked off in
positions, in kilometer distances, and in wave lengths from B.
It will be observed that the V curve passes through either an

T T T T T T
5 & § & % & & Sl
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Fra. 186.—Sizes of Potentials and currents along smooth line of § =2 48
and zo = 400<8° when freed at B and subjected at A to 1.0£0° volt.

actual maximum, or a tendency to a maximum size, at each
odd quarter-wave distance from B. The maximum at the first
quarter is the most marked, and the successive subsequent
maxima dwindle and gradually disappear. The I curve shows on
the other hand, minima at the quarter-wave points and maxima
at the zero and half-wave points, the oscillation in size being
greatest near the B end, and gradually disappearing.

Turning now to Fig. 186, where the conditions are represented
for an open end at B, the V" line hasits minima at odd-quarter wave
points and the I line its maxima at these points. If the scale of
potential and current sizes were suitably selected, the two sets
of curves in Figs. 185 and 186 would completely coincide, the V'
curve in one with the I curve in the other. With the particular
scales shown, the agreement is fairly close.

In the case of a large slope 8° in the linear hyperbolic angle a,
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that is, in lines having small linear losses and large linear react-
ances, as for example a large-conductor aerial line operated at
a high frequency, the successive oscillations in the sizes of poten-
tial and current continue for a number of waves, with but little
damping or diminution. In the case of the line represented in
Figs. 185 and 186, the oscillations in size rapidly diminish after
the first wave length. In lines of large losses and low linear
reactance, even the first oscillation may be imperceptible.

Figs. 185and 186, show in connection with Tables XX and XXI,
that if the line therein considered is open at B, a potential of
0.06716 volt at the quarter-wave point 100 km. from B, would
develop 0.2658 volt at B, a resonant B/A voltage ratio of nearly
4. At the half-wave point III, 200 km. from B, an impressed
potential of 0.2997 volt would produce 0.2658 volt at B, a drop
of 0.1276 per unit, or 12.76 per cent. By proceeding in this
way, the ratio of generator to motor end potential or current can
be found from these figures for any length of this type of line,
at the selected angular frequency of w = 5,000 (f = 796~),
with the line either open or shorted at the motor end.

If the smooth line considered in Figs. 185 and 186 were re-
placed by its equivalent T or II line, the graph of potential and
current sizes would manifestly be a succession of straight lines.
For example, if the artificial line was a II line of cight sections,
each representing a quarter wave at the selected frequency, the
potential sizes at terminals and junctions would coincide with
those indicated at the points Va, Vs, Viy . . . Vo, and would fall
from one such point to the next in a simple straight line. The
current size on the other hand would be in successive horizontal
sections with sudden drops at leaks.

Quarter-wave Artificial Lines.—A quarter-wave artificial line,
which needs only to’ be constructed of a single section, has the
property of producing a relatively large rise of voltage at the
motor free end, when voltaged at the generator end with the
correct frequency. Such a device becomes, in cffect, a fre-
quency-change detector, since if the frequency varies, in either
direction, from the normal for which the line section is designed,
the motor-end voltage falls off rapidly. Such a quarter-wave
artificial line is, however, only a particular set of connections for
producing resonance between inductive and condensive react-
ances at a critical frequency.
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CHAPTER XVI
REGULARLY LOADED LINES

Regular loads on a line are similar loads which recur at regular
intervals. They may be either regular series loads (impedance
. loads) or regular leak loads. Regular series loads are well known
and much used in long-distance telephony.

. In dealing with series loads, their casiest elucidation is perhaps
through the use of the equivalent T'; while in dealing with leak
loads, the equivalent II may be used.

Regular Series Loads.—Let a uniform line, of surge impedance
ro ohms £, be divided into uniform sections of angle 8 hyps. Z.
Let an impedance load of

=2 ohms £ (456)

be inserted between adjacent sections ab, cd, ef, as shown in Fig.
187. The end sections will, by symmetry, terminate in a terminal
impedance load of ¢ ohms Z. It is required to find the angle and
surge impedance which each loaded section AB, CD, EF, appeurs
to possess.

First form the equivalent T of any unloaded section by for-
mulas (246) to (249). These are indicated in Fig. 187 at o'V,
cdd’, and ¢'f’. These are the artificial-line T sections conjugate
to those of the original smooth line. Each has arms of p’ ohms,
and a leak of g’ mhos.

Next add to each arm of a T its adjacent semi-load ¢ ohms Z,
as indicated at A’B’, C'D’, and E'F’. The leaks g’ remain
unchanged. These 7's, as amended, are clearly equivalent to
the loaded sections A,B,, C.\D,, E,F,.

Finally revert from the amended 7’s to their equivalent
smooth lines, using (256) and (257), finding 6, and z,,. This
completes the required solution.

In the particular case of Fig. 187, each unloaded section sub-
tends an angle of 8 = 0.35174 hyp. with a surge impedance of
2o = 1,436.1 ohms. The nominal T of such a section has, there-
fore, a total line impedance of 0.35174 X 1,436.14 = 505.14
ohms, and a total line admittance of 0.35174/1,436.14 = 0.24492
X 10~% mho. The correcting factor for the T arms is tanh
0.17587,/0.17587 = 0.98982, and that for the T staff, sinh 0.35174/
0.35174 = 1.02077. Applying these factors, the equivalent T
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has a resistance in each arm of p’ = 250.0 ohms, and a staff
admittance of 0.250 X 10— mho. Adding in the impedance
semiloads o to each arm, the amended T has arms of C’0, 0D’ =
350.0 ohms. In the amended T line, therefore, r = 700, and

BC ¢ DE e F
4 2 geognu—2 5% L guomu-E PF S _gmomu—f
Q- 506.142 2 0— —

o =100 o=100 0=100 T=100 =100 T=100

. lc
4, By = 0.41534— F
He— - — 710,04 Q

02429 x10°* U

F1a. 187.—Smooth line sections and their equivalents before and after
series loading.

0.25 X 1073. The apparent angle of a half-section is

8 5 0.41833

9 = -\/-02'173 =5 = 0.209165 hyp. The corrected
semi-section angle is » = sinh™! (0.209165) = 0.20767 hyp. and
6, = 0.41534 hyp. The apparent surge impedance of the
amended T sections is z, = v/ 700/0.25 X 10~* = /2.8 X 10°
= 1,673.32 ohms, and the corrected value zo, = 1,673.32 cosh

v =
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0.20767 = 1,673.32 X 1.02164 = 1,709.53 ohms. The loadingof
the line has, therefore, changed the section angles from 0.35174 to
0.41534 hyp. and the surge impedance from 1,436.14 to 1,709.53
ohms. The new sections behave as though they contained
710.04 ohms smoothly distributed resistance and 0.24296 X 10~
mho smoothly distributed leakance.

It should be observed that whereas before the loading, any
section length of the smooth line had the same values of 6 and
2o, after the loading the new values 6, and 2o, apply only at section
junctions, or mid-load points. If we cut into the loaded line
at random, we cannot expect to find these values in a section
length on either side of the cut.

If we analyze algebraically the steps of the process above
indicated, we are led to the following formulas:

If 6 be the angle of a smooth line section before loading,

6, be the angle of the same line section after loading,

2o be the surge impedance of the section before loading,
2o, be the surge impedance of the section after loading,

then’

tanh (02) = \/_t.anl; (g)A t.:nh— (g+ ) numeric Z (457)

where .
tanh é =-; numeric Z (458)
or
= t -1 g
8 = tanh (zo) hyps. £ (459)
Also

cosh 8, = cosh 6 +: sinh§ numeric Z *(460)
0

2, _ sinh 6 .
= 461
- sinh numeric Z (461)

As an a.c. example, consider the case represented in Fig. 188
of a twisted-pair telephone cable having the linear constants
presented in Table XXII and loaded in sections of 2.607 km.
(1.62 miles) with 4.535 + j441.5 ohms per wire. The angle
subtended by a seetion at « = 5,000 radians per sec., before
loading, is 0.20065 + j0.20720 hyp., as shown at AB, Fig. 188,

**“On Loaded Lines in Telephonic Transmissions,” by G. A. CAMPBELL,
Phil. Mag., series vi, vol. v, p. 313, March, 1903.
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the surge impedance being 247.284X43.48’.16"” ohms. The
nominal T of such a section is indicated at aOb. The equivalent
and the amended T, after the addition of a semi-load on one side,
are marked at A’OB’. The conjugate smooth-line section of
the amended T appears at A”B’’. It will be seen that the load-
ing has changed the section angle from 0.20065 + j0.20720 to
0.06216 + j0.7384; while it has changed the surge impedance
from 247.284X43°.48'.16” to 579.776X4°.25' 48",

L = 2600 km. 86.63774 71,3165 85,637T7+31.3165
0= 0.20085 + 5 0,20720 85,662 [ 2°6'57" 86.662 [ 2%6'67’
A =0.2888 [ 4’5" o a Q. 5
S
3
2
~J
o ’ ” s
Zo= 247.284 | 45°48'16 g
s )
. L=2.607 km.
65347L06M) . 37921+ 2218194, 6=0,0621645 0.7384
A o sl 226,087/ 80°1766"> o =0.74102 [ &'1'1T" g
a’ K] o 4
226842207 , 8
22078/ 89°24. 41 8
)
-
)
b "
8 z,=s1167 48
-l

Fi1a. 188.—Series loaded section of standard telephone cable treated through
the substitution of its equivalent T'.

Without going through the process indicated in Fig. 188,
we may use (457) as follows:

tanh (g) = 0.144243/45°.31".21"

o ’ ”
tanh 8 = & = 2?,%@@%;%;%,, = 0.89274£133°.12'.57"

whence
g = 0.37051£85°.11".17"

and
, = 0.74102£85°.11°.17"" hyp.
Also by (389)
~ 5001 20 =/ ¢ 27
zO, = 247-28’1"430-48,.16” X 0.6‘().)‘)6[8() .0) .20

0.288311246°.42".52"
= 579.776<4°.25".48” ohms.
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TasLe XXII -

to in Figs. 188 and 192, before being Loaded

Linear Constants of Twisted-pair Cabled

Per loop km.

Per loop mile

Linear quantity

88
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r=27.34

l'r, = 51.68
|

rll =

Conductor resistance, ohms. .

' 1, = 0.404 X 10~

br,o=44

1 =0.202 X 1073

' 1, =0.325 X 107

Conductor inductance, henrys [,, = 0.65 X 103

| g, = 3.46 X 10~

|

g =2.15 X 10~*

=1.075 X 10~¢

ﬂl'

'
|
|

g, =1.73 X 10~

Dielectric conductance, mhos..

¢, = 0.144 X 10

c = 0.08948 X 10—

0.072 X 107¢

Dielectric capacitance, farads ¢,,

~¢c,, = 0.04474 X 10~

Regular Leak Loads.—If the
smooth line AE, Fig. 189, is
divided into equal sections, anda
leak of T mhos is applied at each
junction, with half-leaks of v; or

' =2y mhos £ (462}

at terminals (A’B’C’D’E’). Then
each smooth section may be re
placed by its equivalent II. To

-0

F16. 189.—Four-section line with leaks
at junctions.

each pillar leak of a IT is added
the leak v, thereby producing an
amended II. This amended II is
then reverted to its conjugate
smooth line of angle 8,, and surge
impedance, zo

As an example consider the case
represented in Figs. 190 and 191.
Here a uniform smooth-line section
of surge impedance 2z, = 2,000
ohms, or surge admittance y, =
0.5 X 10~2 mho, and linear hyper-
bolic angle 0.005 hyp. per km., is
loaded at each end 4’, B’, with a
leak of 0.5 millimho. The un-
loaded section AB subtends an
angle of 0.25 hyp. It contains a
total conductor impedance of
0.25 X 2,000 = 500 ohms and a
total dielectric admittance of
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: 0.25 X 0.5 X 1072 = 0.125 X 10~2 mho. These are the values
¢ to be inserted in the nominal II, which has an architrave im-
: pedance of 500 ohms, and two leaks each of 0.0625 X 10~* mho.
- The correcting factors are sinh 0.25/0.25 = 0.25261/0.25 =
1.01044, and tanh 0.125/0.125 = 0.12435/0.125 = 0.99480.
Applying these to the elements of the nominal II, we obtain the
equivalent II, ab, Fig. 190, with an architrave of 505.22 ohms,
and two leaks, each of 0.062175 X 10~ mho. We now increase

50 km.
@ = 0.2 hyp. , R
A R= 500 B A R =500 B
G=015x10"0 - -
20=200  ¥o=05x 10730 G = 0.x107°8
@ = 0.25 hyp, 6, = 0.554 hyp,
a P = 506,22 0} b a  p"=x6.20 Y
P o
? » - L4
2 S p &
- 2
G B o@
|
%8 ; =3§ B33
ah o N 3
b Ve Tal — - &
G”= 0121% G =0.23x107* 8
2o=2000  ¥o=05x 10730 z5=96,0600  ¥o=L1lu6x10"°0
F16. 190.—CUniform unloaded F16. 191.—Leak loaded-line sec-
line and its equivalent II. tion and its equivalent II.

each pillar leak to 0.312175 X 10~2 mho, leaving the architrave -
unaltered as at a’b’, Fig. 191. The total line impedance r of
a section is thus 505.22 ohms and the total leak admittance g

0.62435 X 10~3 mho. The apparent angle subtended by half
the amended II is thus

V/505.22 X 0.62435 X 10—
2

= 0.280818 hyp. The corrected value is v = sinh~! (0.280818)
= 0.27725 hyp. The apparent surge impedance is 2’¢ =

4/505.22/624.35 X 10-* = 899.552 ohms. The corrected value
20 .
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is zo, = 899.552/cosh 0.27725 = 899.552/1.03868 = 866.05 ohms,
and yo, = 1.1546 X 10~2 mho.

The loaded sections, therefore, behave as though they hada
total conductor impedance of 0.5545 X 866.05 = 505.22 ohms
uniformly distributed, and a total dielectric leakance of 0.5545 X
1.1546 X 102 = 0.62435 X 10~ mho, uniformly distributed.

Instead of going through the steps indicated in Figs. 190 and
191, we may derive the following formulas directly, 6 being the
unloaded section angle, 8, the loaded section angle, yo the surge
admittance before loading, yo, the surge admittance after
loading.

tanh (g—) = \/t.a.r;h (g) - tanh (g +; numeric Z (463)

where

tanh é = % numeric Z (464)
0
or
= -1 (X , 5
5 = tanh (yo) hyps. Z (463)
Also
cosh 6, = cosh 6 + y‘! sinh 6 numeric Z (466)
(]
Y%, _ sinh 6, . -
Yo sinh 8 numeric Z (467)

A remarkable analogy is presented between the groups of
formulas (457 to 461) and (463 to 467).

In the case above considered & = tanh—! (0.25 X 10-3/0.5 X
10~3) = tanh—! 0.5 = 0.549307 hyp. so that

0, e
tanh ( 2) = 4/tanh 0.125 X tanh 0.674307

)
- = 0.27725 and

= 4/0.12435 X 0.58780, = 0.270357; whence 5

6, = 0.5545 hyp., as already found. Again
%, _ sinh0.5545 _ 0.58336
0.5 X 1073 ~ sinh 0.2500 ~ 0.25261

whence yo, = 1.15466 X 10~? mho, and 2o, = 866.05 ohms, as

ahove.

The effect of leak leading in this example has been to increase
the section angle from 0.25 to 0.5545 hyp. and to diminish the
surge impedance from 2,000 to 866.05 ohms.

= 2.30931.
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As an a.c. example, we may consider 2.607-km. sections of
smooth standard twisted-pair cable, referred to in Table XXII
and* Fig. 188. This line is loaded with leaks of I'= (0.013332 —
J1.3332)10~2 = 1.33327 X 10-2 <89°.25’.37”” mho per wire at
junctions, such as would be produced by a reactor of 7.5 ohms
and 0.15 millihenry, to ground at each junction. Thus y =
(0.006666 — 70.6666)10—* = 0.666635 X 102 X89°.25’.37"” mho.

A L = 2,007 km. B A B"
0.20085 437 0,20720 = 0,2%8429 /45°55"14" 0: 0,20085 4 5 0,20720 = 0, 283429 /45°54'1”
Z = 7275445 2.00310 = 71.3238 [2°6'36"" P=T.208453.091 = .29 [H'BN

= =
2. S
- 53 Sigpe
2.2 5 5 $al
o~ 3 R os o |~
g_. 2 3 lI> g
o .
e R
TIE £188
C ) g s o yee
Y = 0.00116539 /39°8'%°0 Y'=1.10002x10" ? /86°19'51" O
2o=247.281\ 84818’ zo=27.284 \8°86°Q
¥, = 4.092x10°3 /6°s5'18"0
A L =2.007 km, B As By
0y=0.0854 - §0.0089 = 0.100729 \36°53 47" 0, = 0.0854- 0.0089 = 0.100729 | sg"z.'s’q'
£=7.10 S0 =T.2m8 /32370 P¥=T1.208 +53.6191 = 712990 [ 254’8’
D T D
2|2 =1
2igs cf- 2
23 L3R
g': = gt é
s s o o Qs
- 2 3%
g E] Al z 2
S = o o
« — o S e v VA SNA
Y =010e:x10°? (w0°19731"' 8 Y=0.16e23x10"% V%0°17'10" O
Vo=1.%1x10"* (0°%'%0"'0 Va=1539x10"" (1°%'0"y
S0~ 649.6 [41°66°'%0''(} Zo= 61968 /410500
Fia. 192.—Smooth line and its equivalent II before and after regular leak
loading.

The unloaded scction is indicated at AB, Fig. 192, and its
equivalent IT at A”’B”’. After adding in the leaks, we obtain
the amended II, A;B;, and finally, by reversion, the conjugate
smooth section A’B’. It will be observed that the loading has

* Further particulars concerning the effects of series loading are given in

Chapter VIII of “The Application of Hyperbolic Functions to Electrical
Engineering Problems.”
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changed the section angle from 0.20065 + j0.20720 to 0.085% -
70.0689 hyp., and the surge impedance from 247.284X43°.48'.16"
to 649.6£41°.55'.50".

Although these leak loads have reduced the real component
of the section angle nearly as much as the series loads of Fig. 183,
yet, in general, the benefit of reduced attenuation is much more
localized toward a critical frequency in leak loading than in
series loading. In other words, the benefits of series loading
extend in this case over a larger range of frequencies than those
of leak loading.



CHAPTER XVII
VARIOUS TYPES OF ARTIFICIAL LINES

Classification of Lines.—If we attempt to classify a.c. artificial
lines on the basis of the nature of line impedance and leak admit-
tance, we may assume that there are three ideal types of conduc-
tor, namely: (a) resistances; (b) inductances; (c) capacitances.

JLw JLRw JLw
® ‘ ® % ® L
féF ’ J'é; 3‘«1:_«»
—— — —ITI—
@ g 2’1; @ chw

F1a. 193.—Fundamental types of artificial lines.

In practice, it cannot be expected that these three types should
be met with in the pure state. There is almost always some ad-
‘mixture, as for example when a resistance is found to be asso-
ciated with a small amount of inductance, an inductance with a

309
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small amount of resistance, or a capacitance with a small amount
of either resistance or leakance. For many purposes, however,
the three types can be obtained sufficiently nearly pure, to per-
mit of classification and discussion.

On the foregoing assumption, there are nine fundamental
types of artificial line, together with a large number of mixtures,
aggregations and subtypes. These nine ideal types are repre-
sented as T sections in Fig. 193. Numbers 1, 2, and 3 have pure
resistance in the line; 4, 5 and 6 have pure inductance in the
line; while 7, 8 and 9 have pure capacitance in the line. Any of
these types may be described as —— series, shunt. Thus,
number 1 is a resistance-conductance type. It will be seen that
three types, Nos. 1, 5 and 9 have the same sort of conductor both
in series and shunt. These types are all-resistance, all-induc-
tance and all-condensance lines respectively. We may call these
three types ‘““homologous types.”

The types of line met with ordinarily in engineering practice

. are Nos. 3 and 6, 7.e., the resistance-capacitance and inductance-
capacitance types, but the other types deserve to be recognized
and examined, even if their present utilities are insignificant.
For this purpose, the clementary properties of the nine funda-
mental types in Fig. 193, in regard to angle and surge impedance,
are collected in Table XXIII. It is assumed that the size of the
angle 6 is so small, that the lumpiness correcting factor of these
sections may be ignored. Approximately pure five-section lines
of all the types in Fig. 193 have been constructed in the labora-
tory, and all have been tested* to some extent.

Column III in the table indicates algebraically the nature of
the series impedance for each type; and column IV indicates
similarly the type of leak admittance. The products of the en-
tries in III and IV give 62 in column V; while their ratios give 2
in column VI. The last two columns express 8 and z, for each
of the types of line, uncorrected for lumpiness.

We may note the following deductions from Table XXIII.
1. For all of the nine pure types of line considered, both 6 and
2o are reals, imaginaries, or semi-imaginaries.

2. The three homologous types (Nos. 1, 5, and 9) all have
6 real, and independent of w.

* ““ Artificial Line Tests,” a thesis towards the degree of Master of Science
at the Massachusetts Institute of Technology, by CHas. W. WHITALL,
May, 1916.
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3. Three types—Nos. 1,6, and 8—have zo real and independent
of w.

Hence it is inaccurate to assume that all types of a.c. artificial
lines necessarily involve complex hyperbolic functions, becaus
any homologous type of line carrying alternating currents sub-
tends real hyperbolic angles.

Furthermore, if we take any homologous artificial line of
given number of short sections, in each of which the ratio of the
leak impedance to the series impedance is the same real number,
then if the artificial line be grounded at the distant end, and operated
at any single frequency, the fall of potential over the line will be
the same whether the line is of the all-resistance, all-inductance or
all-capacitance type.*

The same proposition holds if the homologous artificial line
of constant shunt-series impedance ratio is freed at the B end
instead of being grounded.

The proposition holds because the position angles at corre
sponding junction points on all these homologous lines will have
the same real values, independent of the value of the impressed
frequency. In the first case, the potentials will follow the sines,
and in the second case the cosines of these real position angles,
and the phases of all these potentials will be the same as the phase
of the impressed potential at A, assuming that the type of conduc-
tor in the artificial line is pure.

We may take, as an example, the three-section homologous
lines of unit shunt-series impedance ratio, indicated in Fig. 1%
At A, and A. we have the same all-resistance line of r = 100
and 1/g = 100 ohms per section, with 1.0 volt of d.c. voltage
from a voltaic source impressed at (3). The terminal leak im-
pedances are given their proper IT values. In the A, case, the
line is freed at B; while in the A; case, it is grounded at B. The
potentials, currents and line resistances are indicated on the
diagrams for these two cases respectively, as derived from Ohm'’s
law deduction. The corresponding values of potential as de-
duced from hyperbolic functions are set forth in Table XXIV.

The apparent angle subtended by a section of any of the
homologous lines in Fig. 194 will be 1 hyp. by (140). The sec-
tion angle corrected for lumpiness will be, by (170),

* A string of suspension insulators, as used in tower-line construction,

furnishes an example of homologous artificial line (Fig. 1944;) of the all-
capacitance type.
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Fia. 194.—Unit-ratio homologous artificial lines, in three II sections.
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= 2 sinh! (0.5) = 0.96243 hyp.

This value of 6 would be independent of the impressed frequency,
on the assumption that the resistance, inductance or capacitance
of any of the elements in Fig. 194 is independent of the frequency.

TasrLe XXIV
Distribution of Position Angles and Potentials over a Three-section Homolo-
gous Artificial Line Voltaged with 1.0 at A and either
Freed or Grounded at B

1 ' m | 111 v | v vi | v VI
§ !Position . Cosh ' v,. ' Ve

S ! angle 5P'| Sinh 8p 8p |——— - P
3 hyps. I 'B grounded I B freod. | B grounded, B freed,
A . | ‘ volts volts ' volts i volts

!

I l I |
3 I2 .88729 [\/80 = 8.0443% 0.0 1.000 |1.000 8 18
2’ 11.92486 /11 25=3.3541 ! 3.5, 0.375 | 0.388 | 3 T
lo .96243 I\/1 25 =1.1180 | 1.5 0.125 0.166 | 1 3
B lo i\/d =0 1.0 0 { 0.11i | [\] 2

Columns V and VI of the above table show the potentials at
junctions of the artificial line when the B end is respectively
grounded and freed. These values are plotted in Fig. 195.

They are proportional respectively to the sines and cosines in
columns III and IV.

It is to be observed that in Fig. 194, the homologous line at
A; is an all-capacitance three-section II line, with the same unit
shunt-series ratio; .e., equal impedance in the leaks and line
sections at any or all frequencies. Again, at A; is depicted an
all-inductance three-section II line of unit ratio. Assuming that
the capacitances and inductances in the lines A; and A, are pure,

* It may be noted that the numbers in columns III and VII are in the ratios . . . .-8,
-3,-1,0,1,3,8,21,55 . . . . which constitute what may be called a hyperbolic-sine infin-
ite series of integral numbers, possessing the property that any member is equal to the sum of
its next adjacent members on each side, divided by the constant b of the series. Thus 8 =
(21 + 3) + b; whereb = 3. Similarly the numbers in columns IV and VIII are in the ratio
. 18,7,3,2,3,7,18 . . . . which constitute what may be called a hyperbolic-cosine
infinite series of integral numbers, possessing the same property and constant b. In this
case, also b = 3. These hyperbolic infinite integral series are infinite in number. They are
perhaps unknown. They have some remarkable properties. Theoretically, any of them
may be presented by the potentials at the junctions of a homologous artificial line, when
cither freed or grounded at the distant end, and with the shunt-series impedance ratio appro-
priately selected. Thus, if as in column VIII, Table XXIV, 18 volts were applied at A1,
Fig. 104, the junction potentials up the line would be 2, 3, 7, 18 volts, and so on for more
sections.

In Table XXIV, the hyperbolic sine series of column VII may be expressed as
0.89443 sinh (0.96243N), whe re N is the number of the position, or of the term in the series.
Similarly, the cosine series of column VIII may be expressed as 2 cosh (0.96243N). Also
b = 2 cosh 0.96243.
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an impressed alternating potential of 1.0£0° at A, would develop
the same junction potentials with the B end freed or grounded, as
in the corresponding A; or A; case. Moreover, this condition
is independent of the frequency, and of the absolute magnitudes
of the resistances, capacitances or inductances used. Thus, in
the line A, of Fig. 194, all the resistances—except in the terminal
elements—have 100 ohms. But the junction potentials de-

1.0

0.9+

T\

2
> 0.6}
0.4
\\\
N\,
0.3- \\
N
0.2 N
o \ \
\—0u1 F
0.1 \‘c\'bun ——
0 ~~
0
3 * Positions 1 :

F1a. 195.—Fall of potential along homologous three-section line of unit
ratio, when freed and grounded at motor end.

veloped would be the same if they were all 500 ohms, or had any
other pure resistance value, provided the shunt-series impedance
ratio was maintained at unity.

Series combinations of the different types of line presented in
Table XXIII, produce composite groups, some of which possess
remarkable properties. These relate more closely, however,
to transition or transient phenomcna, than to the steady-state
phenomena which are here under consideration.



CHAPTER XVIII
MISCELLANEOUS USES OF ARTIFICIAL LINES

In addition to the steady-state uses, described in previous
chapters, to which an artificial line may be put, there are twoor
three others, of an incidental character, to which reference may
here be made. These all relate to and depend upon the sens-
tiveness of such lines to changes in impressed frequency. A suit-
ably selected artificial line may be used:

1. As a frequency filter.

2. As a detector of even-frequency harmonics in a source of
alternating e.m.f.

3. As a detector of changes in frequency from the normal.

The Use of an Artificial Line as a Frequency Filter.—We have
already seen that when a telephone line is loaded with lumps of
inductance, too large or too far apart, the line tends to arrest
and suppress frequencies above a certain value by increasing ths
real component 6, of the loaded line angle. In this manner, itis
possible to select an artificial inductance-capacitance line of such
section elements that it shall offer but little impedance to im-
pressed frequencies below a certain critical value; but shall offer
rapidly increasing impedance to frequencies passing beyond that
value. Moreover, by selecting a suitable capacitance-inductance
line, it is possible to perform the inverse operation, 1.e., to have
this line offer but little impedance to frequencies above an
assigned critical value, but offer rapidly increasing impedances to
frequencies below that value. By associating together an
inductance-condensance line with a condensance-inductance line,
it thus becomes possible to filter through the combination an
assigned normal frequency with relatively little absorption, while
opposing rapidly increasing impedance to other frequencies
diverging from the normal and critical value on either side.
This plan was suggested by Mr. G. M. B. Shepherd in 1913.*

* G. M. B. SuerHERD, “Note on High-frequency Wave Filters,” The
Electrician, June 13, 1913, vol. Ixxi, pp. 399-401; see also Science Abstracis
(Engineering), August, 1913, No. 833, p. 424.

316
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Upper Harmonic Suppression.—The simplest way of analyzing
the matter is perhaps to assume that the artificial line has pure
inductance-condensance sections of the type represented at No.
6 in Fig. 193. We know from (170) that the angle subtended by
such a section is .

g = sinh™! (jwﬁg@9> hyps. Z (468)

From an examination of ‘“Tables”” or ‘‘Charts of Complex
Hyperbolic Functions,” it is easy to see that so long as w—~2£g
does not exceed unity, 6 lies between 0 + 70 and 0 + j2. That is
to say, 0 remains purely imaginary, so long as wy/L£C does not
exceed 2. Such a section with a purely imaginary section angle
would be able to change the phase of an a.c. passing through
it, but could not reduce its size. As soon as wv/LC exceeds 2,
however, the angle 6 develops a rapidly increasing real compo-
nent 6,, which involves loss of energy and attenuation in the
traversing current. If, for example, wy/LC = 3, then

; = sinh~!(1.5) = 0.9624 + j 7, or = 1.9248 + jr.

Consequently, the critical frequency of this line section, above
which it rapidly imposes a barrier to alternating currents is

2 radians
“=Vic wc. (169
or
1 cycles
f= / LC (470)

Thus, if the section capacitance were C = 2 X 10~¢ farad, and

the section inductance £ = 0.18 henry, then the critical fre-

quency of an artificial line containing one, two, or more such
sections would be

_ 10 _ 1,000

f =3 x06 1885

In practice, the prescnce of resistance associated with the
inductance in the scries elements of the line would exercise a
modifying influence, in detail, on the computation, the steps of
which could, nevertheless, be carried out with the precision
afforded by the measurements of the impedances, by the use of

= 530.5 ~.
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(170); but the approximate formula (470) would probably suffice
for many purposes.

Under Harmonic Suppression.—Again, if the artificial line
were of the pure capacitance-inductance type, as indicated at
(8) Fig. 193, then the angle subtended by the section would be
(Table XXIII)

0 _ ot .1 .
9 = sinh <2m \/.L'C) hyps. £ (47])

1 1
So long as the bracketed quantity 2‘;% does not exceed

unity, 6 is purely imaginary, and lies between 0 and j2. As
soon as the bracketed quantity exceeds unity, 6 develops a
rapidly increasing real component, with accompanying attenus-
tion and energy loss. The critical value of impedance, therefore,
is, when w falls below the angular frequency,

1 radians

Y= Ve sec. 7

or
. cycles .-

f= 4r/ LC 4n)

With L = 0.18 henry, and C = 2 X 10~ farad, as before, /1(
3

=0.6 X 103, andf = 7}&2 = 132.6~. Frequencies above this

critical value would pass attecnuated only in phase or slope.
Below this value, they would pass attenuated both in size and in
slope. The value of 4/ LC in a condensance — inductance section
necessary for the critical value of 530.5~, would be four times
less than in an inductance-condensance section.

Theoretically, therefore, a C-L section of C = 0.5 X 10
farad, and £ = 0.045 henry, in series with a £—C section of £ =
0.18 and ¢ = 2 X 10-8, should produce a composite line, which,
with pure resistanceless elements, would offer no impedance to
alternating currents of the critical value 530.5~, but would offer
rapidly increasing impedance to frequencies deviating on either
side from this eritical value.

Qualitative experiments have already verified the preceding
theory, but published quantitative tests as to the degree of
attenuation offered by such opposing composite lines on currents
of deviating frequeney are still lacking.

In the case of the two-wire artificial line recorded by Shepherd,
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the line condensers had each 0.08 X 10~ farad, and the shunt
coils 0.2 henry. Reducing this to the single-wire basis C = 0.08

1
—6 = - = T - T, T =" -. =
X 10-%,and £=0.1. Hence by (473), f 712.574/0.8 X 10-8

4
—12;5-7—%? 0.8944. = 110—1’02%(2 = 889.7~, which agrees with the value
reported.

Detection of Even-frequency Harmonics.—We have already
seen, in Chapter XV, that a quarter-wave line subtends an angle
0y = 6, +j1 hyps. For simplicity, we may assume that a
certain smooth line has negligible conductor resistance and di-
electric leakance; so that when operated at quarter-wave fre-

quency, 6, = 0, and 0y = jg = j1 hyp. The current entering
this line at the generator end will be, by (128),

I, = V.yo coth &, amp. Z (474)
wﬁere Yo = \/‘I_: ohms, a real conductance. If now the line is

first grounded and then freed at B, the corresponding values of
64 are j1 and j2 imaginary quadrants, respectively, and the
corresponding entering currents will be V,yo coth (51) and Vaye
coth (72). But coth j1 = j0,and coth j2 = j « ;80 that with 60~,
say, the entering current will be zero with the line grounded at
B, and infinity with the line freed at B.

Moreover, this state of affairs would be presented for all odd
harmonic frequencies. Thus, if a triple-frequency e.m.f. were
impressed on the line, still with negligible losses, its angle would
be j3 hyps. and coth j3 = coth j1. Asin the preceding case, the
line would take zero current at A when grounded at B, and an
infinite current at A when freed at B.

But if an even-harmonic frequency were applied at A, the
lossless line would develop an angle of corresponding even number
of imaginary quadrants. In that case, its cotangent would be
infinite when the far end was grounded, and zero when the far
end was freed. Thus, if the double-harmonic frequency (120~)
were impressed at A, this would be the half-wave frequency,
and the line would develop the half-wave angle j2 hyps. The
entering current would now be infinite with B grounded, and zero
with B freed. The same would be true for any even-harmonic
impressed frequency (240~, 360~, 480~, ctc.).
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If next a 60~ generator isappliedat 4, with a complex harmonic
e.m.f., or containing a number of harmonic frequencies, and the
line is grounded at B, then the fundamental-frequency current
and all the odd-harmonic currents will be zero at A; but the
even-harmonic currents would be infinite. The line therefore
acts as a sieve at the A end, suppressing all the odd-harmonic
currents, and increasing indefinitely the even-harmonie currents.

In any actual line, there will necessarily be some conduetor
resistance and dielectric leakance, so that there will be lomms
in the line when it carries alternating currents of any frequemey
and the line angle will not be a pure imaginary. It will wl
a real component 6,. In the case, however, of a well-ingulited
line of large carrying capacity, this real component may-be
expected to be relatively small. Consequently, when such s lne
of quarter-wave length at fundamental frequency, is grounded
at the far end B, and has a complex or multi-frequency wave of
e.m.f. impressed upon it at A, the old-frequency components
will not be zero, but may yet be very small, and the even-fre-
quency components will not be infinite, but may yet be very
large. Such a quarter-wave line is, therefore, a magnifier of
such even-frequency harmonics as exist in the e.m.f. wave, and
especially of the first or double-frequency harmonie, since the
magnification will be less, the higher the even multiple. A prop-
erly constructed a.c. generator is ordinarily supposed to produce
no even-harmonic components of e.m.f., and they are admittedly
small, but they may be larger than is expected. When the gen-
erator is used to excite a quarter-wave line grounded at the distant
end B, and an oscillograph is inserted at 4, the resulting current
oscillograph will contain magnified even harmonics, and minified
odd harmonics including the fundamental.

For the purposes of such a test, the line may conveniently be
a quarter-wave artificial line, with as little linear resistance and
linear leakance as is practicable. An oscillogram of the current
wave at the generator end, when the distant end is grounded,
may be expected to reveal the presence of the magnified even*
harmonics. If these magnified even harmonics are notably pres-
ent, they will distort the oscillographed current wave with re-
spect to the zero line, the shape of the positive half-waves being
rendered different from that of the negative half-waves.

* “ Analyzing Electric Waves for Harmonics,” by C. W. RICKER, Elec-
trical World, Sept. 18, 1915.
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In the case of the artificial line specified in Table XIV and
tested by Mr. Ricker as a quarter-wave line, the size of the send-
ing-end impedance, with B grounded, was found to be 2,799 ohms
at 60~, and 42.0 ohms at 120~, a magnification ratio of 66.7 in
favor of the double-frequency harmonie.

Fi1a. 196.—Oscillograms of impressed voltage wave (60~) impressed on a

3uarter-wave artificial line, and also of the generating-end current with the

istant end freed and grounded. The apparent phase relations of these
three oscillograms are not significant.

. Fig. 196 shows the wave forms of the current entering this
quarter-wave line, with the distant end B freed and grounded
respectively, suitable shunts being applied in each case, so as to
keep the wave amplitude normal for being photographed. It -
will be seen that the wave form with B on open circuit is sub-

F1a. 197.—Oscillogram of an impressed voltage wave and of magnified
third and fifth harmonics contained in it on successive beats with resonant
artificial lines.

stantially a smooth sinusoid. Here the fundamental and odd-
harmonic components are favored and the even-harmonic com-
ponents repressed. In the case of B end shorted or grounded,
when the even harmonies are magnified and the odds repressed,

the wave form not only departs from the sinusoidal, but it
21
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is also dissymmetrical on the 4+ and — sides of the mid-line.*
This indicates the presence of even-frequency harmonics in the
generated wave, which, from its oscillograph in Fig. 196, might
not be suspected.

An artificial line may also be used to magnify some particular
harmonic frequency, either odd or even. By shortening a line
to the amount necessary for resonance to that particular harmonic,
an oscillograph may enable this ‘magnified harmonic to be
detected or measured. Thus, Fig. 197 shows the oscillograph
of the same impressed e.m.f. as in the last preceding case, and
also oscillograms of its third and fifth harmonics, as magnified
by this process.

Since in all these cases of harmonic magnification, the magni-
fication factor can be computed to a satisfactory degree of pre-
cision, from the constants of the artificial line used, they enable
such artificial lines to be used as adjuncts to oscillographic
measuring apparatus.

Artificial Lines as Detectors of Frequency Variations.—The
marked and often objectionably obtrusive influence of variations
in the impressed frequency, on the distributions of potentisl,
current and impedance along an artificial line under tests,
naturally suggests the use of such a line for the purpose of
detecting and manifesting frequency changes. One such use
has already been suggested at the end of Chapter XV in relation
to quarter-wave lines.

* This mid-line, or zero line, does not appear on the oscillogram.
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APPENDIX B

PROPOSITIONS RELATING TO ALTERNATING
CONTINUED FRACTIONS

Constant Continued Fractions.—A continued fraction of the

type
F.(c) = R numeric 2 (529)

is called a ‘““constant continued fraction,” because the quantity
¢, which may be positive or negative, integral or fractional, real
or imaginary, constantly reappears in each denominator.

Let us denote a constant continued fraction of even number
n,, of stages, by F,,(c), and one of odd number n, of stages, by

F,.(c).
Then*
— _ coshmp -
F,(c) = Sinb{(n, + )] numeric Z (530)
and
_ sinh n,v .
F,,(c) = cosh{(n, + v} numeric Z (531)
where :

v = sinh™! (;) or sinhv = ; numeric Z (532)

Let us assume that (530) is true for some particular value of
n,.
Then

1
! sinh{(n, + 1)v} .
= cosh{(n, + £ (533
2sinh v + cosh n,v cosh{(n, + 2)p} TUTCNC (533)

sinh{(n, + 1)v}
which agrees with (531).

* “The Expression of Constant and of Alternating Continued Fractions
in Hyperbolic Functions,” by A. E. KENNELLY. The Annals of Mathematics,

2d series, vol. ix, No. 2, January, 1908.
327
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Similarly, assuming that (531) is true for some particular value
of n,.

Then

1
. “ sinhn,,v
2 sinh v + éosil{(n,, +71)0;
cosh{(n,, + 1)v}
sinh{(n, + 2)v}
which agrees with (530).
The entire series of integral values of n from 1 to « is thus
ensured in (533) and (534), if we can show that

1
Fy 41(c) = ¢+ F.. (© =

numeric Z (534!

cosh v 1
Fi(e) = Sinl} 2 ¢
But _
cosh v cosh v 1

1 . ..
sinh 20 ~ 2sinhv-coshy _ 2sinhy ~ ¢ "UmerC £ (53)

which completes the demonstration.
When n approaches «, it is evident from (530) or (531) that

F« (c)= €*=coshv—sinhy = ;<\/1 + :—2 - 1) numeric Z (536)

As an example, we may consider the four-stage constant con-
tinuous fraction,
1

12375 + - — - L. —
12375+ — —
1.2375 + — —

1.2375

The successive convergents of this fraction by ordinary arith-
metic, are 0.80808, 0.48886, 0.57925 and 0.55043. Using (530),
we have

Fu(1.2375) = Sinhde 1.2375

cosh 5yt Where sinh v = =0 = 0.61875.

By tables, » = 0.58483, so that 4v = 2.33934
and 5 = 2.92417, so that

sinh 2.33934 _ 5.1390

Fi(1.2375) = sh 2.92417 = 9.3363

= 0.55043.
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The limit of this fraction for an infinite number of stages would
be, by (536), e —0-58483 = (.55720.

Alternating Continued Fractions.—A continued fraction of
the type

F.(a,b) = ———1——i numeric Z  (537)

at -y
o, b+ —---

% o, +- __1

€, @

b+
is called an “alternating continued fraction.” The example given
in (537) is a ““four-stage alternating fraction” or briefly a “four-
stage alternate,” denoted by F4(a, b), a being the first denominator.

1t is easy to see by trial that

d 1
d X F.(a,b) = -~ - = LR
1 aQ 1
e, W
1 1
a+ - a+__<.
b+ b+
R - numeric £ (538)
a 1
O+
bd+'a ----- 1
()+ -
bd +

The process can manifestly be extended to all of the stages of
any alternate. It is cvident that the effect of multiplying an
alternate F,(a, b) by a constant d, is to produce a new alternate
whose odd denominators are all a/d and whose even denominators
are all bd.

In the particular case where the constant d has the value

d = \/Z numeric Z (539)
. b
the new alternate has odd denominators a . \/a = 4/ab and even

denominators b\/z = v/ab. Thatis, if we multiply any alternate

continued fraction of a given number of stages by the square root of
the ratio of the first denominators in their order, the new alternate 1s
reduced to a constant continued fraction of the same number of stages;
so that
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\/:- -Fo(a,b) = Fa(v/ab) numeric Z (540)
and

F.(a,b) = \/Z-F.(\/ab) numeric Z (341)

or, in full,

bt ' Vab+— oy
®n, at+ - to ab + s
s b+ " otag Vab +
= - 17 numeric Z (542)
¢4 -—
% c+ — —
q’% c+ —
c+
where ¢ = v/ab.

Thus, any alternating continued fraction may be expressed as a
coefficient times a constant continued fraction of like number of
stages, the constant denominator +/ab being the geometric mean of
the denominators a, b, in the alternate, and the coefficient being
v/b/a,the square root of the latter in inverse order.

The values assigned to a and b in (537) to (542) may be any
whatever, except that if b = —a, and 0<c?<4, a case which
is unlikely to occur in practice, we obtain

sin nc 1
F.(a, —a) = sin{(n + )¢} — ;_*_ 1

1

—a +——~—< i

a;.'& a+-— ‘:;
—a
= 1 ] numeric Z (543)
AR
e a— L
Qeec

a —

whether n be odd or even. This particular case, solved in terms
of circular functions, is known as Strehlke’s theorem, and was
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published by him in 1864.* Curiously enough, although readily
derivable from (530), (631) and (542), it does not lead back to
those formulas.

In view then of (530) and (531), it follows that any alternating
continued fraction Fu(a,b), of n stages in a and b, may be expressed
as a constant factor \/b/a times the ratio of functions of nv and
(n + 1)v, where v 1s an auziliary hyperbolic angle, or we may write

_ bh coshny . .
Fa(ab) = a " sinh{(n, + 1)o} numeric Z (544)
_ [b_  sinh (n,v) .
F,, (ab) = a cosh{(n, + 1)v} numeric Z (545)
where v = sinh“(vzab> = sinh“(‘éa . \éb) numeric Z (546)
As an example, consider the three-stage alternate
Fala,b) = — - L. .
0.00025 4 ---- - -=-3
500+ 00025

Here a = 0.00025, and b = 500. We transform this into a con-
stant continued fraction, using (542)

Fs(a, b) = \/2 Fa(Vab) = \'10.300825 X
e ' 1
V0.125 + C
V0.125 +
4/0.125

By (544) this becomes

osh : , 125
V2,000,000 - D30 Chore v = Smh_1<\/ 0.)1 ))

sinh 4o
= 0'333004 = 0.176777. We find in tables, that the angle

whose sine is 0.176777, iz 0.17586 hyp. Hence

cosh 0.52758
=9 d
sinh 0.70344 2,117.7.

* A. B. Strenike, Grunert's Archiv der Mathematik und Phyxik, 1864,
vol. xlii, p. 343.

F3(0.00025, 500) = 1,414.214 X
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Terminally Loaded Alternating Continued Fractions.—If an
alternating continued fraction F,(a,b), of n stages in denominators
a followed by b, terminates in a denominator m, where m has any
value real, imaginary or complex, it is called a terminally loaded
continued fraction, and the fraction 1/m is the terminal load.
That is

Fa(a,b)1 = - L 1 numeric /Z (547
Y N b + L
e a4 .. .1
’“"&54. b + 4—1<
.oom

In dealing with terminally loaded alternates, it is convenient to
use an ascending notation, thus:

Fo(a, b)1 = i:i numeric £ (548)
Fi(a, b)1 = —-—1»—1» numeric Z (549)
a + ’;B
Fy(b,a)1 = 1 numeric Z (550)
m 1
b+ — g
o

etc. Sec (148) to (153) and (180) to (191).
Then it is easily shown from (544) and (545) that

b sinh(n,v 4 v')

F., (a, b)'ln =\a coshi(n, 4 Ve 4+ 7] numeric Z (551)
, . cosh(n,v +v') . .
F,, (a, b).l.. = Na sinh|(n £ )5 + ) numeric Z (552)

where ¢ is the same as before, see formula (546) and ¢’ is a new
auxiliary hyperbolic angle, obtained as follows:

. b
If m is less than e - \/a' then

a .
m\/b — sinh ¢
o= t:mlr‘(- - —-—/ hyps. £ (553)

cosh v
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If, on the contrary, m is greater than ¢ - \[2;

v =" + jg hyps. £ (554)
and
a .
b~ sinh v
In that case (551) and (552) become

! "
F,(a,b)1 = b cosh(np +7) numeric £ (556)

" =tanh—n<—“”‘h—"_-~) hyps. Z (555)
m

b . _sinh(n,v + ")

F.,,,(a, b),l» = Va cosh{(n + 1) ¥ v} numeric Z (557)

In the particular case when m = ¢ - \/z

vV =1 = « hyps. £ (558)
In the case when m = b/2, ' = 0 by (5653) and

b sinh nv .
F.(a,b), p= \/ o cosh{(n + 1jy) Dumeric Z (559)

and )

b _ coshmp

a sinh{(n,, + 1)v}

It may also be noted that if

F,,(a,b), /; = numeric £ (560)

F.(a, b)'l'l = g-};{—(%q_;})—lﬁl- numeric Z (561)
then
F.(b, a)’l" = JZ . 1 ({z(f)l)vj numeric £ (562)

where f and f” are hyperbolic functions determined according to
(551) and (552). That is, the inversion of @ and b in an alternate,

. . . b
terminally loaded or not, only inverts the coefficient \/a’ and

does not affeet the hyperbolic fraction.

Alternating Continued Fractions Loaded at the Upper Terminal.
—If any quantity ¢ is added to an alternate, it may be described
as an upper load to the alternate, and the alternate is said to be
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loaded at the upper terminal. Thus ¢ + F,(a, b)1, is an alter-

nate loaded at both ends.
Thus a three-stage alternate loaded at both ends would be

g+ Faabp =g+

a+_.7

If ¢ = b/2, the alternate becomes, by (551),

b | _ b Vab sinh(n,v + v')
g T Fnla,b) = \/al 2 T Gosh{(n, + 1)o + o'},

= [l _ sinh (np +0)
N \/a{smh v+ cosh{(n, + )v + v'}}
= \/2 - cosh v - tanh{(n, + 1)v + ¢'}

numeric Z (563}
and

b _ [bi\/ab cosh(n, v + v') ]
g+ Fn(ab) = \/a‘(“‘f t Shi(n, 4 Do + 7]

= \/z -cosh e - coth{(n, + 1)v + ¢}
numeric Z (564)
If m exceeds e'.\/b,}a, then, as before, j ; + ¢”” must be substi-

tuted for ¢, see (556), and this will lead to the mutual inversion
of tanh and coth in (563) and (564).
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A, B sizes of complex numbers (numeric); also resistances of a
pair of bridge arms (ohms).
A A’,, A", arbitrary constants in solution of line differential equa-
tions (volts £).
A;, A';y A'; arbitrary constants in solution of line differential equa-
tions (amperes £).
a, b successive denominators of an alternating continued
fraction (numeric £).
a a hyperbolic angular velocity (hyps. per sec.).
a linear hyperbolic angle (hyps. per km. Z).
t = \/-—74;7;‘,, = a3 — jag = \/-2;';;;«': —j‘\/ét‘y‘aw (em.m! Z).
a,, a,. linear hyperbolic angle per wire km. and per loop km.
respectively (hyps./km. £).
ay, as real and imaginary components of linear hyperbolic angle
(numeric/km.).
B, arbitrary constant in solution of line differential equa-
tions (volts £).
B; arbitrary constant in solution of line differential equations
(amperes £).
B susceptance of an a.c. line (mhos).
b = cw linear susceptance of an a.c. line (mhos/wire km.).
B, B1, B: circular angles (radians or degrees); also slopes of complex
quantities (degrees).
C capacitance of a condenser or of a section conductor (farads).
¢o linear capacitance of pair of round parallel wires (stat-
farads/loop cm.).
c,, linear capacitance of pair of round parallel wires
(farads/loop km.). )
¢ linear capacitance of pair of round parallel wires
(farads/wire km.); also a constant quantity forming the
successive denominators of a constant continued fraction
(numeric Z).
v admittance of a leak (mhos Z).
¥ = 1/p conductivity of a substance (abmhos per ¢m.); also the
slope of the radius vector of an equiangular spiral (degrees).
I' = 2y admittance of a leak load (mhos £).
D interaxial distance between two parallel cylindrical con-
ductors (cm.).
d = v/V depression factor of a leak applied to a line (numeric £);
also in theory of alternating continued fractions the ratio
v/a/b (numeric £).
A’, A” auxiliary hyperbolic angles (hyps. £).
84, 8p, 8¢, 5p position angles at generator end A, at motor end B and
at points C and P, on a line (hyps. £).
335
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3n, 8n position angle of junction N or leak N of an artificial

line (hyps. £).

E electromotive force (r.m.s. volts).

e = 271828 . .

. Napierian base.

f impressed frequency (cycles/sec.).
F.( ) a continued fraction of n stages.
f(nv), f'(nv) generic hyperbolic functions of nv in the theory of alter-

nating continued fractions (numeric Z).

G total dielectric admittance of a line (mhos £); in thed..

case total dielectric conducfance.

G,, G, G; line admittances to ground on each side of a leak respect-

ively, and their sum (mhos £).

Gp, Gc line admittance beyond any point. P and a reference

point C of a line (mhos £).

Gx, G'x line admittance at leak N excluding and including that

leak respectively (mhos £).

G"'~ line admittance at junction N of a II line including the

half leak g/2 only (mhos £).

Gcn, Gen line admittance at position of junction N, or of leak Non

a conjugate smooth line (mhos £).

g linear dielectric admittance of a line (mhos/wire km. /),

9,09,

in the d.c. case linear dielectric conductance.
linear dielectric admittance per wire km. and per Joop km.
respectively (mhos/km. £).

g1, 92 pillar leak admittances of an equivalent IT (mhos £).

go = 1/7¢
gllo = \/g’/r

g
’

g
gll
(]
0a
01, 02, 03

01, Os

0, d6

0"
1

surge admittance of a line, in the d.c. case surge con-
ductance (mhos Z).

apparent surge admittance of a II section, uncorrected for
lumpiness (mhos £).

leak admittance per section of artificial line (mhos £).
admittance in the staff of an equivalent 77 (mhos £).
admittance in the pillar of an equivalent II (mhos 4.
angle subtended by a line comprising a plurality of sec-
tions (hyps. £).

apparent angle subtended by a T or II section, uncorrected
for lumpiness (hyps. £). ’

hyperbolic angles (hyp. radians or hyps. Z), angles sub-
tended by successive sections of a composite line (hyps. £).
real and imaginary components of a hyperbolic angle
(numeries).

hyperbolic angle and element (hyp. radians £).

angle subtended by a line (hyps. £).

hyperbolic angle per wire and per loop (hyps. £).

angle subtended by a terminal impedance load at motor
end of line (hyps. £).

section angle after regular loading (hyps. £).

auxiliary hyperbolic angle of a sending-end impedance.
line current at any point of a smooth line (amperes £).



LIST OF SYMBOLS EMPLOYED 337

I, line current at a point 1 km. beyond the reference point
(amperes £).
I4 line current at generator end A of a line (amperes £).
Ip line current at motor end B of a line (amperes £).
I¢ line current at point C on a line, where the electrical con-
ditions are known (amperes £).
Ip line current at point P on a line, where the electrical con-
ditions are known (amperes Z).
I.. maximum cyclic current strength (amperes).
Iy, Ix line current at junction N and leak N of an artificial T'
line (amperes £).
Icn, I.x line current at position of junction N and leak N on a con-
jugate smooth line (amperes £).
i1, t2 changes in line current on each side of a leak due to its
admittance (amperes Z).
I, I. active and reactive components of a stationary vector
current I (r.m.s. amp.).
Jo(aoz) Bessel function of (aoz) of zeroth order (numeric Z).
J1(aoz) Bessel function of (aez) of first order (numeric Z).
i=v-1
k = V /v correcting factor for a leak applied to a line (numeric £);

also the ratio ¢ /r; of a terminal load to the surge impedance -

(numeric).
k. correcting factor for the semi-section angle v of an artificial
line section (numeric £).
correcting factor for line branches of a nominal T
(numeric Z).
correcting factor for staff leak of a nominal T
(numeric Z).
kp,, correcting factor for architrave of a nominal II
(numeric Z).
ky,, correcting factor for pillar leaks of a nominal I
(numeric £).
x permittivity of a dielectric (nominal numeric).
L length of a line (km.).
Ly, L, distances of a point on a line from the generator and
motor ends respectively (km.).
L inductance of a coil or of a line (henrys).
! linear inductance of a line (henrys/wire km.).
lo linear inductance of a pair of parallel wires (abhenrys/loop
cm.).
l,, lincar inductance of a pair of parallel wires (henrys/loop
km.).
A wave length on an a.c. line (km.).
M complex multiplier of z, sinh 84 in the theory of composite
line equivalent II architrave (numeric £).

m = : + ¢ impedance beyond leak I of a T line (ohms £); also the

denominator of the terminal load of an alternating con-
tinued fraction (numeric £).
22
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m, transmission coefficient of voltage wave at transition from
2, to z; (numeric Z).

m. transmission coefficient of current wave at transition from
z, to z; (numeric Z£).

n=s + v admittance beyond motor end terminal of a II line, in-

cluding terminal leak (mhoe £);also in theory of composite
lines 4 = 1/0 admittance of a terminal load (mhos £);
internal permeability of a wire (gausses/gilberts per cm.).
N, N number of a junction and of a leak, respectively, in an
artificial line, starting from the motor end (numeric).

n number of sections in a multi-section line (numeric); also
number of stages in a continued fraction; also exponent
of a number (numeric); also ratio of voltage transforma-
tion in a transformer (numeric).

n,, n, odd and even numbers of stages in a continued fraction.
» = 1/p"” admittance of a I architrave (mhos £).
»1, v2 architrave admittances on each side of a leak load
(mhos Z£).
P, active component or real component of complex power
(watts).
P reactive component or imaginary component of complex
power (j watts).

Pp, Pc volt-amperes or size of complex power at selected point P,
and at reference point C of a line (volt-amperes); volt-
amperes or size of complex power.

P.~, P.x volt-amperes at position of junction N or leak N on a con-
jugate smooth line (volt-amperes).

II a delta connection of three impedances simulating a line
at an assigned frequency.

r =3.14159 . . .

g the imaginary component of a complex hyperbolic angle

expressed in quadrants instead of in radians.
Ry impedance at junction N, especially in c.c. case (ohms £).
Rx, R'x impedance at leak N, excluding and including that leak
respectively (ohms £) especially in c.c. case.
Rsa, Rya line impedances at generator end A, when respectively
freed and grounded at far end (ohms Z£).
R;x, R,y corresponding line impedances at and beyond junction
N (ohms 2£).
R;, R, impedance offered by a line when freed and grounded
respectively at the distant end (ohms £).
R’ = 1,G impedance equivalent of a total line leakance G (ohms £).
R; recciving-end impedance of a line, in c.c. case receiving-
end resistance (ohms Z£).

R total conductor impedance of a line (ohms Z); in the d.c.
case, total conductor resistance.

R,, R,, total conductor impedance per wire and per loop respect-
ively (ohms £).
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R,'N
Rs, Rc, Rp

[e'l == l/”ll
Rch Rcl

r

rI

r

r,
v = \/7/9

Tosy Ty

~

r',,

L )

8, ds

=20
T

-
~
-

Vx

line impedance at junction N of a I line, including a half-
leak only (ohms Z£).

line resistance beyond a generator end A4, a motor end B,
a reference point C and a selected point P (ohms £).
impedance in pillar leak of an equivalent II (ochms £).

line impedances at positions of a junction N and leak N,
respectively, on a conjugate smooth line (chms £).

linear conductor impedance of a line (ohms/wire km. £);
in the c.c. case linear conductor resistance.

linear resistance of a round wire as influenced by skin
effect (ohms/wire km).

linear resistance per wire km. (ohms/w. km.).

linear resistance per loop km. (ohms/l. km.).

surge impedance of a line (ohms £).

surge impedance of wire line and of loop line, respectively
(ohms £).

apparent surge impedance 4/r/g, uncorrected for lumpiness
(ohms £).

line impedance per section of an artificial line (ohms £).
length of a radius vector in polar coérdinates (cm.); also
size of a complex quantity (numeric); also radius of.a wire
(cm.); also virtual internal resistance of a condenser (ohms); .
also resistivity of a substance (absohm-cm.).

! resistance in branch of an equivalent T (ohms Z£).

resistance in architrave of an equivalent IT (chms Z).

arc and arc element (cm. or circular radians).

impedance load to ground or zero potential at motor end
of a line (ohms Z£).

regular impedance load (ohms £).

a star connection of three impedances simulating a line
at an assigned frequency; also the time of single transit of
a voltage or current wave over a line (sec.).

elapsed time (seconds).

semi-section angle (hyps.); also apparent velocity of propa-
gation along a line (km./sec.).

auxiliary hyperbolic angles in theory of continued fractions
(hyps. £).

apparent semi-section angle of a T section, uncorrected for
luinpiness (hyps. £).

7 potential at any point on a line (volts £).

potential at a point 1 km. beyond the reference point
(volts ).

potential at generator end A of a line (volts £).

potential at motor end B of a line (volts £).

potential at a point (' of a line, where the electrical con-
ditions are known (volts 2).

potential at a point P on a line (volts £).

potential at an unknown point X on a line fed from both
ends (volts £).
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Vx, Vn potential at junction N and leak N of an artificial line
(volts £).
Ven, Ven potential at position of junction N and of leak N, respee
tively, on a conjugate smooth line (volts £).
v potential at a leak in the presence of its admittance

(volts Z).

V'y, V', V'3 . . . Fourier gsine component amplitudes of a complex har-
monic voltage wave (volts).

V', V", Vs . . . Fourier cosine component amplitudes of a complex

harmonic voltage wave (volts).

Ve, Ves, Ves . . . Fourier resultant component amplitudes of a complex
harmonic voltage wave (volts).

Vo, V1, Vo, Vs . . . Fourier resultant r.m.s. component amplitudes of s
complex harmonic voltage wave (volts).

¢ phase angle of a condenser (defect from 90°) (degrees).

W maximum cyclic energy in a.c. circuit or conductor (joules).
W active or real component of W (joules).
W, reactive or imaginary component of W (joules).
Wa = 2W, maximum cyclic magnetic energy in a.c. circuit or con-
ductor (joules).

X reactance of a coil or of a line (ohms); also in the theory
of skin effect, the radius of a conducting wire (cm.).

z Cartesian codrdinate on X axis; also distance alongs
line from a reference point in a down-energy direction (km.);
also radius of a point in the cross-section of a wire (em.).

Y diclectric admittance of a line (mhos £).

Y/a, Y,a line admittance at A, with motor end freed and grounded
(mhos Z£).
y Cartesian codrdinate on Y axis.
Yo = 1/2z¢ surge admittance of a line (mhos £).
Yor surge admittance of a line after regular leak loading
(mhos £).
y = g + jb linear dielectric admittance of a line (mhos/wire km. £).
y-+ linear dielectric admittance of a line (mhos/loop km. £)-
Yoo = 1/2z0 limiting value of surge admittance of a line neglecting
losses (mhos).
Z = R + jX impedance of a coil or of a line conductor (ohms £).
Zsa, Zga line impedance at A with motor end freed and grounded
(ohms 2).
2’ linear impedance of a round wire due to skin effect
(ohms/wire km. £).
2y surge impedance of a line (ohms £).
zy+ surge impedance of a two-wire line (loop ohms £).
2’y apparent surge impedance 4/r/g of a T line (ohms Z).
2"y apparent surge impedance 4/r/g of a II line (ohms £).
z = r + jr linear conductor impedance of a line (ohms/wire km. 1.
z,, =r,, + jr,, linear conductor impedance of a line (ohms/loop km. £
z, impedance of a motor-end load (ohms /).
w = 2xf angular velocity or angular frequency (radians per sec.)
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we = 4f angular velocity or angular frequency (quadrants per sec.).
200 = 4/1/c limiting value of surge impedance ignoring losses (chms).
2y, 23, 2; in theory of composite lines, surge impedance of succes-
sive sections (ohms Z).
2o, surge impedance of a line section after loading (ohms).
« sign of infinity.
Z sign of a complex quantity or of the slope of a complex
quantity.
'a' size of the complex quantity « (numeric).
a slope of the complex quantity a (degrees or radians).
~ sign for “cycles per second.”
Q sign for ohms impedance.
U sign for mhos admittance.
2 gign for “nearly equals,” or approximate equality.
f sign for farads capacitance.
uf sign for microfarads capacitance.
muf sign for millimicrofarads.
pupf sign for micromicrofarads.
logh hyperbolic logarithm to base e.
log common logarithm to base 10.
hyp. contraction for “hyperbolic radian.
r.m.s. contraction for ‘“root mean square.”
a.c. contraction for “alternating-current.”
c.c. contraction for “continuous-cur‘rent."

”






INDEX

Abhenry or C.G.S. magnetic unit of
inductance, 143
Active conductance, 129
resistance, 125
Actual velocity of propagation, 153
Addition and subtraction of vectors,
117
Admittance, linear wire, 149
Aggregate conductor resistance R of
a line, 16
dielectric leakance G of a line, 16
Ahlborn, G. H., 213
All-capacitance artificial line, 312
All-inductance artificial line, 312
All-resistance artificial line, 312
Alternating continued fractions, 327
Alternating-current artificial lines,
fundamental properties of,
164
simple circuits, 124
Anderson bridge, 234
Angle hyperbolic of a line, 16
Angles, real circular, 6
real hyperbolic, 6
Apparent velocity of propagation,
152
Architrave admittance, 242
Artificial line, as frequency filter,
316
definition of, 1
homologous types of, 310
principal purposes of, 1
sections, unrealizable, 167
various types of, 309
lines and duplex telegraphy, 2
historical outline of, 2
Attenuation constant of a.c. line,
151
of a line, 16
factor, normal a.c., 156
normal of a line, 18
Axis of imaginaries, 114
of reals, 114

343

Becker, G. F., 120

Bedell and Crehore, 127

Bessel functions, 147
Bifurcating composite lines, 275
Bouton, C. L., 123

Cable circuit, pure, 156
Campbell, A, 236
Campbell bridge, 234
Campbell, G. A., 110, 302
Campbell mutual-inductance bridge,
235
Cantilevers, 252
Casual loads, 254
Changes in architrave formula with
casual loads, 276
Characteristic resistance of a line, 19
Chrystal, G., 123 i
Circuit, distortionless, 154
Circular angles, real, 6
and hyperbolic formulas list of,
323
Clerk-Maxwell, 141
Cohen, B.S., and Shepherd, G. M. B,
181
Cohen, B. S., 233
Complex harmonic waves, 192
hyperbolic angles, 119
quantities defined, 113
Composite line, a.c. example, 261
of impedance terminal
loads 268
architrave and casual loads,
276
impedance, second method,
250
attenuation in miles, 286
definition of, 15
equivalent IT of, 249
intermediate leak loads in,272
impedance loads in, 269
laboratory tests of, 280
terminal series loads of, 254



34

Composite line, leak loads in, 271
transformer in, 278
lines, 240
bifurcating, 275
line-current distribution over,
247
position-angle
over, 245
power distribution over, 247
Condensive susceptance, 129
Conjugate smooth line, 62, 64
Constant, attenuation, of a line, 16
continued fractions, 327
propagation, of a line, 16
wave-length, 152
Constants, linear of a real line, 15
Contacting polygons, internal and
external, to equiangular
spiral, 169
Continued fractions, alternating and
constant, 327
Correcting factor for a leak load, 111
factors for T and II sections, 91
Cosine of complex hyperbolic angle,
120
Cosines of real circular and hyper-
bolic angles, 9
Crab addition or perpendicular sum-
mation, 194
Cunningham, J. H., artificial line
design, 5
Current at point along line in terms
of position angle, 39
Cycloid, 136

distribution

Depression factor of a leak load,
defined, 111

Design and construction of artificial
a.c. lines, 196

Detection of even-frequency har-
monics, 319

Detectors of frequency variations,
artificial lines, 322

Distortionless circuit, 154

Distribution of c.c. line tests among
observers, 100

Disturbances in potential and cur-
rent due to a leak, 106

Division of vectors, 118

INDEX

Double surge impedance, T and I
sections of, 211

Douglas, J. F. H., 292

Drysdale, C. V., 158, 224

Drysdale-Tinsley potentiometer, 222

Duplex telegraphy and artificial
lines, 2

Even-frequency harmonics, detec-
tion of, 319
Equiangular spiral, 157
polygon, 169
Equivalent circuits defined, 89
I defined, 89
of composite line, 249
T defined, 89
Estwick, C. F., 215
Exponential case, 45
Exponentials, geometrical interpre-
tation of, 12, 13
External contacting polygon to
equiangular spiral, 169
linear loop and external linear
wire inductance, 141, 142

Factor, normal attenuation, of s
line, 18
Feldmann and Herzog, 92
Fictitious impedance diagrams, 140
Filter of frequencies, artificial line
for, 316
Fleming, J. A., 115, 116, 224, 235
Four-wire artificial lines, 56
Fractions, alternating continued, 327
Frequency filter, 316
limitations of artificial lines, 239
measurements, 238
Frequencies, range of, 125
Functions, Bessel, 147
Fundamental and secondary con-
stants of a line, 22
differential equation of line,
complete solution of, 28
of a smooth line, 24

Gati, B., 233
Gieneral Railway Signal Co., artificial
track circuit, 215
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Generator end of line defined, 30

Graphical relation between poten-
tial and current spirals, 159

Gray, A., 110

Greenhill, A. G., 135, 157

Grover, F. W, 237

Half-wave and quarter-wave lines,
288
Harmonic suppression, under, 318
upper, 317
Harmonics, detection of even-fre-
quencies, 319
sine and cosine, 193
Heaviside, O., 24, 29, 154, 163, 243
Herzog and Feldmann, 92
Historical outline of artificial lines, 2
Homologous types of artificial line,
310
Huxley, R. D., 204
Hyperbolic and merger II of compos-
ite line, 243
angle, linear, of a line, 16
angles, complex, 119
real, 6
Hyperbolic-cosine, infinite series of
integers, 314
radians, 7, 16
-gine infinite series of integers,
314

I Sections of artificial line defined,
166
Imaginary axis, 114
component of rectangular vec-
tor, 114
Impedance graphs on artificial and
a.c. conjugate smooth lines,
184
model of a.c. line, 231
tests, 219
Inductive reactance, 125
susceptance, 129
Infinite series of numbers, hyper-
bolic-sine and cosine, 314
Infrasurge impedance, 51
Initial current at sending end, 161
Intermediate impedance load in
composite line, 269
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Intermediate, leak loads in compos-
ite line, 272
Internal contacting polygon to equi-
angular spiral, 169
linear impedance of a wire, 148
loop and internal linear wire
inductance, 141, 142
Involution and evolution of vectors,
. 119
Iterative resistance of a line, 19

Jahnke and Emde, 147

Laboratory tests of composite line,
280
Laws, F. A, and Pierce, P. H., 147
Leak loads, 254
regular, 304
Leblane, M., 163
Lewis, L. V., 215
Line admittance, 48
current tests by ammeter, 232
impedance, 48
reactors, design of, 197
resistance in unsteady state, 51
Lines regularly loaded, 300
Linear and total hyperbolic angles of
a line, 21
complex hyperbolic angle of line
or section, 149
constants of a line, 15 .
dielectric leakance and admit-
tance of a real line, 15
hyperbolic angle of a line, 16, 17
impedance, internal, of a wire,
148
inductance, 141
loop capacitance, 142
inductance, 141
reactance, 145
susceptance, 147
resistance and impedance of a
real line, 15
wire admittance, 149
capacitance, 144
impedance, 147
inductance, 142
reactance, 145
susceptance, 145
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Loaded lines, regularly, 300
Loads, casual, 254
leak, 254
regular, 254
leak, 304
Loop capacitance, linear, 142
inductance, linear, 141
-kilometer or loop-mile con-
stants, 21
reactance, linear, 145
surge impedance, 161
susceptance, linear, 147
Lossless line, 154
Lumpy artificial lines classified, 55
lines, definition of, 2

Magnusson, C. E., Gooderham, J.,

and Rader, R., 204
and Burbank, S. R., 204, 291

McCready, Harold, 213

Measurement of individual induc-
tances, 233

Merger II, 243

Motor end of line defined, 30

Muirhead, Alex, artificial submarine
cable, 3

Multiplication of vectors, 117

Natural resistance of a line, 19
Negligible line leakance and reduc-
tion to Ohm's law, 36
Nominal 11, defined, 91
T defined, 90
Normal a.c. attenuation, 156
defined, 45
factor, 45
of a line, 18
graphs on a. c. lines, 167
spiral, 157
waves, 161
Numbers, hyperbolie-sine and cosine,
infinite series of, 314

() Sections of artificial line defined,
166

Orthogonal projection, 13

Osborne, H. 8., and Pender, H., 144

Overhead aerial lines and their leaks,
28 :

INDEX

Pender and Huxley design of reactor,
144, 205
and Osborne, 144
Perpendicular summation or crab
addition, 194
1I-line admittance on each side of a
junction, 74
currents at junctions, 77
at mid-sections, 84
defined, 57
distributions worked out, 78, 79,
80
impedances at junctions, 69
at mid-sections, 84
junction potentials, 76
lumpiness correction factor, 73
potential at mid-sections, 83
powers at mid-sections, 84
section angle, 72

Plane vectors defined, 113
polar, 115
rectangular, 114
Plug contact piece, 209
Plural frequencies on a.c. lines,
192
Position angle, definition of, 37
distribution on composite
line, 245
angles, solution in terms of, 37
Potentials in terms of position
angles, 38
Potentiometer and voltmeter meth-
ods compared, 230
tests of c.c. artificial line, 103
Power at any point of a line, 53
on a.c. lines, 187
Primitive of fundamental differen-
tial equations of line, 28
Prolate trochoid, 136
Projection orthogonal, 13
Propagation constant of a line, 16
Properties of real circular and hyper-
bolie angles, 7
Pupin, M. L, artificial lines, 4
Pure cable circuit, 156
Quadrant  measure  for circular
angles, 123
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wave and half-wave lines,
288

hyperbolic, 7, 16

f frequencies, 125

| formula for skin effect, 148

ge, 219

celess surge impedance, 163

k circuit, 155

i, non-ferric, 204

wre frame, 202

3, 114

ilar and hyperbolic angles,
common properties of, 7

numerical values of sines,
and cosines, 8

1gles, 6

ponent of rectangular vec-

tor, 114

erbolic angles, 6

atities defined, 113

g-end impedance defined, 52

als of vectors, 119

1lar plane vectors, 114

m of formulas from circular

to hyperbolic trigonome-

try, 10

n coefficients for individual

waves, 243

leak loads, 304

8, 254

y loaded lines, 300

ce, characteristic, 19

itive, 19

iral, 19

e, 18

n from T or II section to

conjugate smooth line, 93

3. W, 320

m, D., 238

power diagram, 134

or diagrams, 132

A, 144

y and fundamental con-
stants of a line, 22

ngle, uncorrected, 58
citances, measurements of,
236
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Semi-imaginary quantities, 154
Sending-end impedance measure-
ments, 220
Sending end, initial current at, 161
Series-resistance method of measur-
ing capacitances, 237
Shepherd, G. M. B., 197, 316
Shepherd, G. M. B., and Cohen,
B. S, 181
Silsbee, F. B., 144
Similarity of sectors in normal atten-
uation spiral, 160
Simple alternating-current circuits,
124
Sine and cosine harmonics, 193
of complex hyperbolic angle,
121
Sines of real circular and hyperbolic
angles, 9
Single-wire and two-wire line con-
stants, 20
artificial lines, 55
Size of vector defined, 115
Skin-effect in round wires, 147
Slope of vector defined, 115
Smooth lines, definition of, 1
Splash, 161
Square-frame reactors, 202
Standard twisted-pair telephone
cable, 150
Statfarad or C.G.S. electrostatic unit
of capacitance, 143
Stationary vector diagrams, 132
Steinmetz, C. P., 127, 279
Strehlke, A. B, 331
Super surge impedance load, 42
Surge admittance, 162
impedance, 160
reactanceless, 163
uncorrected, of a section, 59
resistance of a line, 18

T and II sections of double surge
impedance, 210
Tangent of complex hyperbolic
angle, 123
Tangents and antitangents, 41
of real circular and hyperbolic
angles, 9






